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Abstract 

This paper presents a model for smart 

grid data management based on specific 

characteristics of cloud computing, such as 

distributed data management for real-time data 

gathering, parallel processing for real-time 

information retrieval, and ubiquitous access. The 

appliance of the cloud computing model meets 

the requirements of data and computing intensive 

smart grid applications. We gathered these 

requirements by analyzing the set of well-known 

smart grid use cases, most of which demand 

flexible collaboration across organizational 

boundaries of network operators and energy 

service providers as well as the active 

participation of the end user. Hence, preserving 

confidentiality and privacy, whilst processing the 

massive amounts of smart grid data, is of 

paramount importance in the design of the 

proposed Smart Grid Data Cloud. 
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(AMI),  communication technologies, quality-of-
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I. INTRODUCTION- THE DATA CLOUD MODEL FOR 

THE SMART GRID 

The majority of smart grid use cases are 

characterized by the exponential growth of data from 

the many intelligent, communicating devices and the 

need for fast information retrieval. Ubiquitous 

access to actionable information about electricity 

consumption, generation, transmission and delivery 

across organizational boundaries of generators, 

network operators, retailers and consumers will form 
the backbone of a new electricity era. Typical for 

this new electricity era is also the increased 

dynamics through distributed and renewable 

generation both at the distribution and the 

transmission level. Liberalization and the creation of 

new market roles result in requirements for a more 

flexible platform-centric approach to data delivery 

and usage, in which all data are accessible to all 

actors whilst preserving confidentiality of 

competitors’ data and privacy of end users. A major 

challenge is that ICT and data management costs 
prevent initiatives from becoming widely adopted 

after pilot projects. Sensors and actuators make 

devices along transmission and distribution 

communicative and controllable. However, capital 

and operational costs of data management for energy 

market actors to make informed decisions about how 

to control these resources reach prohibitive levels if  

 

each actor must replicate infrastructures for 

managing data from the same sources in order to 

retrieve information according to their different 

needs. Figure 2 shows data and information flow 

separated from the control flow. The rationale 

behind this separation is that actuators will be 

triggered by the legitimate parties on events. Whilst 

sensors and other data sources external to the power 

system, such as weather sensors and electronic 

markets, will generate a continuous flow of data, 

which is subject to the on demand information 
retrieval needs of each party. In such a scenario a 

data service provider would provision their data 

management and processing resources to any 

legitimate interested party. The main contribution of 

the data service provider is to offer reusable services 

such as data collection, data validation and cleaning, 

data analysis, information retrieval, and archival. 

The value added and reduced costs are remarkable: 

Each energy market actor needs the data delivered 

by a set of sensors: These sets, however, are 

overlapping. Using traditional IT, each party would 
be replicating the needed infrastructure and software 

for data management for the majority of the needed 

data sources. For the provisioning of such smart grid 

data as a service, we propose a platform-centric 

cloud computing approach, which has proven to 

accommodate internet-scale data and computing 

intensive applications in a multi-tenant setting [13, 

14, 15]. In the research community there are current 

efforts to classify and deliver appropriate definition 

of cloud computing [16]. In this paper, we are 

providing a conceptual view on cloud computing as 

a platform for smart grid data management. The 
emphasis is on the specific characteristics of cloud 

computing, which result in an internet-scale platform 

and can facilitate the data intensive needs of the 

smart grid use cases detailed in Section II. Figure 3 

depicts the model of ubiquitous data storage and data 

access for the Smart Grid Data Cloud. The specific 

internet-scale characteristics, such as 

interoperability, ease-of-use and extensibility, 

distributed data management and parallel processing 

techniques, as well as concepts for managing 

confidentiality and privacy in such a ―hyper-tenant‖ 
environment are explained in the following 

subsections. 

 

A. Interoperability and Extensibility 

The Smart Grid Data Cloud consists of 

interconnected data centers accessible from IP-based 

networks via simple web- based APIs, such as REST 
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[17]. Sensors as data sources put their data in a 

continuous flow via the put API of the data cloud. 

Legitimate energy market actors can query for 

information via simple get API. It is necessary to use 

load balancing mechanisms depending on the type of 

data, the locality of the data source as well as 

patterns of data access for information retrieval by 
the energy market actors. For example, metered 

consumption data is sensed in intervals via smart 

meters at any location, and queried by retailers, end 

users and distribution system operators as well as 

other service providers (e.g. energy management 

service provider for end users) in different 

aggregation levels and times. Other sensor data may 

be delivered by sensors throughout the different 

transmission and regional networks, whilst 

information in the form of data analysis results are 

retrieved by any of the transmission system 

operators focusing on their networks and adjacent 
transmission and distribution hubs. The simple web-

based APIs can also enhance the required 

extensibility for the smart grid domain. Any cloud- 

connected party with access rights can deploy their 

own applications and services, such as a portfolio 

management application or an algorithm for data 

analysis, in the cloud computing platform. These 

services can be shared or provisioned for use by 

other cloud-connected parties on the data that those 

parties have access rights to. Such flexible and open 

access design can remarkably increase business 
innovation around the available information, as 

recently demonstrated in other IT-driven domains, 

e.g. [18, 14]. Additionally, costs for the 

infrastructure and data management are shared 

proportionally by the utilizing parties. This 

characteristic is often referred to as ―pay-per-use‖ in 

the cloud computing domain. Whilst easy to 

interface web-based APIs enable interoperability and 

extensibility around the Smart Grid Data Cloud 

allowing any internet-enabled device to put data and 

get information, the networking protocols utilized 

within and between the data centers allow for 
scalability and availability of the cloud computing 

platform. The specific networking protocols are 

tightly coupled with the data management and 

processing scheme used by the cloud computing 

platform, which will be explained in the next 

subsection. 

 

 Distributed Data Management and Parallel 

Processing 

Existing cloud computing platforms, which 

have proven to enable application development on 
internet-scale and extensibility by 3rd parties, share 

one common trait. They utilize distributed data 

structures and appropriate data management 

algorithms for large scale data-intensive 

applications. The resulting fault tolerance allows the 

data centers to consist of large numbers of 

commodity hardware [19, 20, 21]. For highly 

parallelizable applications, the cost advantages of 

using inexpensive, PC-based clusters over highend 

multiprocessor servers can be substantial: the 

multiprocessor server is about three times more 

expensive but has 22 times fewer CPUs, three times 

less RAM, and slightly more disk space [22]. 

 

II. SMART GRID CLOUD COMPUTING 

OPERATING  SYSTEM 
Cloud computing operating system is the 

overall management system of data center behind 

the smart grid cloud platform, it is constructed on 

software resources such as stand-alone operating 

systems and hardware infrastructures like servers, 
storages and networks. Simply put, our cloud 

operating system has the following functions: 

 

• It manages and drives large mass of basic hardware 

like servers and storages. It integrates physical 

resources of the data center into a logical server. 

• It provides common and standard APIs to cloud 

applications. 

• It is responsible for managing massive computing 

tasks and dispatching resources. 

 

Cloud computing operating system is the 
key step to realize cloud computing. It simplifies the 

computing and provides a more efficient 

computational model. As shown in figure2, our 

cloud computing operating system includes 4 parts 

as follows: virtualization management, DFS, safety 

management control, cloud computing services 

interface. By the way, cloud computing services 

interface provides interface to the development and 

application which will manage the underlying data 

center visibly. 

 

A. Virtualization Management 

Virtualization management simplifies the 

management of underlying data center and helps 

enterprises to reduce the burden and expenses in 

management, visualization and maintenance of 

heterogeneous storage infrastructures. It monitors 

each application status visibly all times. Once found 

abnormal actions, it will warn the administrator to 

repair, avoiding affecting the normal operation of the 

entire system. According to user's access situation 

and server’s CPU loading condition, virtualization 
management will call dynamic load-balancing 

algorithm. And it will evaluate, configure and supply 

storage resources automatically, to realize the 

purpose of user shared resources and effective 

improvement of resources utilization. 

 

B.  DFS(Distributed File System) 

Due to block based DFS, customer data is 

deployed redundantly in masses of cheap storages. 

Parallel and distributed computing provides 

excellent data redundancy. Distributed concurrent 

data processing technology not only makes high-
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performance services provided simultaneously to 

users by storage nodes possible, but also ensures 

higher efficiency of data transportation. Therefore, 

block based DFS is more suited to mass throughput 

cloud computing platform. There are several current 

popular DFS: HDFS by Hadoop, FastDFS by 

Google, Iustre by Oracle.etc. FastDFS is customized 
for Internet Applications. It is aware of redundancy 

backup, load balance and linear expansion, 

emphasizes targets like high availability and 

performance. It is mainly designed for large capacity 

and high page view of small files. Compared to other 

Google FS, characteristics of FastDFS architecture 

and design concept mainly reflects in three aspects: 

lightweight, packet mode and equivalence structure. 

So FastDFS is much suitable for our cloud 

computing operating system as it can provide better 

cloud services to inner enterprise. 

 

C.  Safety Management Control 

Private cloud computing separated 

computing from storage and realized multiple users’ 

sharing for the same basic resources, but at the same 

time, numerous users sharing the same resources, it 

will create higher challenges to data security. 

Specifically, private cloud computing security 

involves several main aspects as follows: data access 

risk, data storage risk, information management risk, 

data isolation risk, legal investigation support risk, 

sustainable development and transfer risk, etc. 
Security control in our operating system needs a 

comprehensive prevention and control of 

infrastructure security design, cloud computing 

center operating system architecture, authentication 

and encryption strategy to ensure information 

security of the entire system. 

 

III. CLOUD COMPUTING OF ELECTRIC POWER 

SYSTEM 
A. The proposed intelligent cloud of electric 

power system 

Electric power system is a super-system 

with distributed parameters. Due to electric power 

system’s own characteristics, it cannot store energy 

in a large scale, and electric generation, 

transmission, distribution and usage must also be 

completed simultaneously. Production control of the 

electric power must be strong real time, high 
reliability, with the characteristics of natural 

distribution. Electric power production and 

management is naturally formed as a set of 

architecture of "hierarchical management, 

hierarchical control, distributed processing ". Many 

years of practice shows that this is the reflection of 

the intrinsic nature characteristics of power system. 

"Intelligent cloud" can automatically split large 

calculation into small pieces through the power 

system intranet and deliver to a huge system which 

is constituted by many servers to compute and 

analyze, and then return the results to the user. 

Through the intelligent cloud, huge information can 

be handled in a very short period of time, which can 

get to the supercomputer’s level of service. Through 

distributed computing, electric power system is 

running similarly to the Internet, and electric power 

system intelligent cloud can switch resources 

according to application, get access to the computer 
and storage resources on demand. The purpose of 

Intelligent Cloud is to move the running grid nodes 

or computation on a single computer system to a 

huge number of "intelligent cloud" in system, and 

the cloud processes the request of the point or the 

computer. Using electric power system intelligent 

cloud, we needn’t enhance computing power of the 

node or the computer any more, and we can get 

computing power and resources from intelligent 

cloud, improving greatly computing power of every 

point of overall system. Currently, power grid at all 

levels has a certain processor and storage resources, 
the advantage of the realization of intelligent cloud 

is that we can keep the existing distribution of our 

computers and make the most use of the physical 

structure of information networks of current electric 

power system, allocating calculation and storage 

resources for the current task. 

 

B. The components of electric power system 

intelligent cloud 

China's existing electric power system is 

characterized by the geographical features where 
power grid is distributed, different network 

topology, electrical characteristics of power grids, 

which divides power grid into multiple subnets. The 

scheduling, operation, monitoring, protection, 

distribution and marketing of each subnet is 

managed by centre of the subnet which is 

maintaining the detailed parameters of the power 

grid which is managed by the subnet. The networks 

have established more detailed electric power system 

model for the power grid in the networks while the 

networks have made the simplification and 

equivalence to some extent for the adjacent grid 
model, and do computer simulation based on this 

system model, providing an important basis for the 

power scheduling, operation, monitoring, protection, 

transmission and distribution and marketing. This 

simplification and equivalent method overcomes the 

difficulty in collecting data for China's vast territory, 

reducing the complexity of system simulation. But 

the simplification and equivalent model has limited 

application scope while Intelligent Cloud can solve 

this problem. Given the sensitivity of electric power 

system data and the integrity of the inner network of 
China power system, power system in China can use 

the existing physical network devices of system 

inner network to establish a private cloud of electric 

power system. With this cloud computing model, the 

power system can fully control cloud computing, 

this cloud storage and access to computing resources 

can be completely controlled by the power system 
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itself, rather than the public cloud services provider, 

which equivalents to using the system to establish 

our own inner cloud. 

We consider the following anycast field 

equations defined over an open bounded piece of 

network and /or feature space 
dR . They 

describe the dynamics of the mean anycast of each 

of p node populations. 

|

1
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We give an interpretation of the various 

parameters and functions that appear in (1),   is 

finite piece of nodes and/or feature space and is 

represented as an open bounded set of 
dR . The 

vector r  and r  represent points in   . The 

function : (0,1)S R  is the normalized sigmoid 

function: 

 

 
1

( ) (2)
1 z

S z
e




  

It describes the relation between the input 

rate iv  of population i  as a function of the packets 

potential, for example, [ ( )].i i i i iV v S V h    

We note V  the p   dimensional vector 

1( ,..., ).pV V The p  function , 1,..., ,i i p   

represent the initial conditions, see below. We note 

  the  p   dimensional vector 1( ,..., ).p   The 

p  function , 1,..., ,ext

iI i p  represent external 

factors from other network areas. We note 
extI  the 

p   dimensional vector 
1( ,..., ).ext ext

pI I The p p  

matrix of functions , 1,...,{ }ij i j pJ J   represents the 

connectivity between populations i  and ,j  see 

below. The p  real values , 1,..., ,ih i p  

determine the threshold of activity for each 

population, that is, the value of the nodes potential 

corresponding to 50% of the maximal activity. The 

p real positive values , 1,..., ,i i p   determine 

the slopes of the sigmoids at the origin. Finally the 

p real positive values , 1,..., ,il i p   determine the 

speed at which each anycast node potential 

decreases exponentially toward its real value. We 

also introduce the function : ,p pS R R  defined 

by 1 1 1( ) [ ( ( )),..., ( ))],p pS x S x h S h     

and the diagonal p p  matrix 

0 1( ,..., ).pL diag l l Is the intrinsic dynamics of 

the population given by the linear response of data 

transfer. ( )i

d
l

dt
  is replaced by 

2( )i

d
l

dt
  to use 

the alpha function response. We use ( )i

d
l

dt
  for 

simplicity although our analysis applies to more 

general intrinsic dynamics. For the sake, of 

generality, the propagation delays are not assumed to 

be identical for all populations, hence they are 

described by a matrix ( , )r r  whose element 

( , )ij r r is the propagation delay between 

population j  at r  and population i  at .r  The 

reason for this assumption is that it is still unclear 

from anycast if propagation delays are independent 

of the populations. We assume for technical reasons 

that   is continuous, that is 
20( , ).p pC R 

   

Moreover packet data indicate that   is not a 

symmetric function i.e., ( , ) ( , ),ij ijr r r r   thus 

no assumption is made about this symmetry unless 

otherwise stated. In order to compute the righthand 

side of (1), we need to know the node potential 

factor V  on interval [ ,0].T  The value of T  is 

obtained by considering the maximal delay: 

 ,
, ( , )

max ( , ) (3)m i j
i j r r

r r 


   

Hence we choose mT   

 

C. Mathematical Framework 

A convenient functional setting for the non-delayed 

packet field equations is to use the space 
2 ( , )pF L R   which is a Hilbert space endowed 

with the usual inner product: 

1

, ( ) ( ) (1)
p

i iF
i

V U V r U r dr




   

To give a meaning to (1), we defined the history 

space 
0 ([ ,0], )mC C F   with 

[ ,0]sup ( ) ,
mt t F    which is the Banach 

phase space associated with equation (3). Using the 

notation ( ) ( ), [ ,0],t mV V t        we write 

(1) as  
.

0 1

0

( ) ( ) ( ) ( ), (2)
,

ext

tV t L V t L S V I t

V C


    


 
  

Where  
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1 : ,
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Is the linear continuous operator satisfying 

2 21 ( , )
.p pL R

L J 
  Notice that most of the papers 

on this subject assume   infinite, hence requiring 

.m      

Proposition 1.0  If the following assumptions are 

satisfied. 

1. 
2 2( , ),p pJ L R     

2. The external current 
0 ( , ),extI C R F   

3. 
2

0 2( , ),sup .p p

mC R  

 
     

Then for any ,C  there exists a unique solution 

1 0([0, ), ) ([ , , )mV C F C F      to (3) 

Notice that this result gives existence on ,R  finite-

time explosion is impossible for this delayed 

differential equation. Nevertheless, a particular 

solution could grow indefinitely, we now prove that 

this cannot happen. 

 

D. Boundedness of Solutions 

A valid model of neural networks should only 

feature bounded packet node potentials.  

 

Theorem 1.0 All the trajectories are ultimately 

bounded by the same constant R  if 

max ( ) .ext

t R F
I I t
    

Proof :Let us defined :f R C R   as 

2
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1
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def
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dt
    

  

We note 1,...min i p il l   
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F
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p J I lR
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Let us show that the open route of F  of 

center 0 and radius , ,RR B  is stable under the 

dynamics of equation. We know that ( )V t  is 

defined for all 0t s  and that 0f   on ,RB  the 

boundary of RB . We consider three cases for the 

initial condition 0.V If 0 C
V R  and set 

sup{ | [0, ], ( ) }.RT t s t V s B     Suppose 

that ,T R  then ( )V T  is defined and belongs to 

,RB  the closure of ,RB  because  
RB is closed, in 

effect to ,RB  we also have 

2
| ( , ) 0t T TF

d
V f T V

dt
      because 

( ) .RV T B  Thus we deduce that for 0   and 

small enough, ( ) RV T B   which contradicts 

the definition of T. Thus T R  and 
RB is stable. 

 Because f<0 on , (0)R RB V B   implies 

that 0, ( ) Rt V t B   . Finally we consider the 

case (0) RV CB . Suppose that   

0, ( ) ,Rt V t B    then 

2
0, 2 ,

F

d
t V

dt
     thus ( )

F
V t  is 

monotonically decreasing and reaches the value of R 

in finite time when ( )V t  reaches .RB  This 

contradicts our assumption.  Thus  

0 | ( ) .RT V T B     

 

Proposition 1.1 : Let s  and t   be measured simple 

functions on .X  for ,E M  define 

 

( ) (1)
E

E s d  
  

Then 


 is a measure on M .  

( ) (2)
X X X

s t d s d td      
  

Proof : If s  and if 1 2, ,...E E  are disjoint members 

of M whose union is ,E  the countable additivity of 

  shows that  

1 1 1

1 1 1

( ) ( ) ( )
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n
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Also,
( ) 0,  

 so that 


 is not identically . 

Next, let  s  be as before, let 1,..., m   be the 

distinct values of  t,and let { : ( ) }j jB x t x    If 

,ij i jE A B   the

( ) ( ) ( )
ij

i j ij
E
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and ( ) ( )
ij ij

i ij j ij
E E

sd td E E           

Thus (2) holds with ijE  in place of X . Since  X is 

the disjoint union of the sets 

(1 ,1 ),ijE i n j m     the first half of our 

proposition implies that (2) holds. 

 

Theorem 1.1: If K  is a compact set in the plane 

whose complement is connected, if f  is a 

continuous complex function on K  which is 

holomorphic in the interior of , and if 0,   then 

there exists a polynomial P  such that 

( ) ( )f z P z    for all z K .  If the interior of 

K is empty, then part of the hypothesis is vacuously 
satisfied, and the conclusion holds for every 

( )f C K . Note that  K need to be connected. 

Proof: By Tietze’s theorem, f  can be extended to a 

continuous function in the plane, with compact 
support. We fix one such extension and denote it 

again by f . For any 0,   let ( )   be the 

supremum of the numbers 
2 1( ) ( )f z f z  Where 

1z  and 2z  are subject to the condition 

2 1z z   . Since f  is uniformly continous, we 

have 
0

lim ( ) 0 (1)


 


  From now on, 

  will be fixed. We shall prove that there is a 

polynomial P  such that  

 

( ) ( ) 10,000 ( ) ( ) (2)f z P z z K      

By (1),   this proves the theorem. Our first objective 

is the construction of a function 
' 2( ),cC R  such 

that for all z   

( ) ( ) ( ), (3)

2 ( )
( )( ) , (4)

f z z
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( ) ( ), (5)

X
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Where X  is the set of all points in the support of 

  whose distance from the complement of K  does 

not  . (Thus  X contains no point which is ―far 

within‖ K .) We construct  as the convolution of 

f  with a smoothing function A. Put ( ) 0a r   if 

,r  put  

 

2
2

2 2

3
( ) (1 ) (0 ), (6)

r
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And define 

( ) ( ) (7)A z a z
  

For all complex z . It is clear that 
' 2( )cA C R . We 

claim that  

2

3
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24 2
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R

A

A
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The constants are so adjusted in (6) that (8) 

holds.  (Compute the integral in polar coordinates), 

(9) holds simply because A  has compact support. 

To compute (10), express A  in polar coordinates, 

and note that 0,A


 


  

 

' ,A a
r

  
  

Now define 

2 2

( ) ( ) ( ) ( ) (11)

R R

z f z Ad d A z f d d           

  

Since f  and A  have compact support, so does  . 

Since  

 

2

( ) ( )

[ ( ) ( )] ( ) (12)

R

z f z

f z f z A d d   

 

  
 

And ( ) 0A    if ,    (3) follows 

from (8). The difference quotients of A  converge 

boundedly to the corresponding partial derivatives, 

since 
' 2( )cA C R . Hence the last expression in (11) 

may be differentiated under the integral sign, and we 

obtain 

2

2

2

( )( ) ( )( ) ( )

( )( )( )

[ ( ) ( )]( )( ) (13)

R

R

R

z A z f d d

f z A d d

f z f z A d d

   

   

   

   

  

   







   

The last equality depends on (9). Now (10) 

and (13) give (4). If we write (13) with x  and 

y  in place of ,  we see that   has continuous 

partial derivatives, if we can show that 0   in 
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,G  where G  is the set of all z K  whose distance 

from the complement of K  exceeds .  We shall do 

this by showing that  

 ( ) ( ) ( ); (14)z f z z G    

Note that 0f   in G , since f  is holomorphic 

there. Now if ,z G  then z   is in the interior of 

K  for all   with .   The mean value 

property for harmonic functions therefore gives, by 
the first equation in (11), 

2

2

0 0

0

( ) ( ) ( )

2 ( ) ( ) ( ) ( ) (15)

i

R

z a r rdr f z re d

f z a r rdr f z A f z

 








  

  

 

 

  For all z G  , we have now proved (3), 

(4), and (5) The definition of X  shows that X is 

compact and that X  can be covered by finitely 

many open discs 1,..., ,nD D  of radius 2 ,  whose 

centers are not in .K  Since 
2S K  is connected, 

the center of each jD  can be joined to   by a 

polygonal path in 
2S K . It follows that each jD

contains a compact connected set ,jE  of diameter at 

least 2 ,  so that 
2

jS E  is connected and so that 

.jK E     with 2r  . There are functions 

2( )j jg H S E   and constants jb  so that the 

inequalities. 
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1 4,000
( , ) (17)

j

j

Q z

Q z
z z







 



 
 

   

Hold for jz E  and ,jD   if  

2( , ) ( ) ( ) ( ) (18)j j j jQ z g z b g z      

Let   be the complement of 1 ... .nE E   Then 

 is an open set which contains .K  Put 

1 1X X D   and 

1 1( ) ( ... ),j j jX X D X X       for 

2 ,j n    

Define  

( , ) ( , ) ( , ) (19)j jR z Q z X z    

  

And 

1
( ) ( )( ) ( , ) (20)

( )

X

F z R z d d

z

   




 





  

Since,  

1

1
( ) ( )( ) ( , ) , (21)

i

j

j X

F z Q z d d   


  

  

(18) shows that F  is a finite linear combination of 

the functions jg  and 
2

jg . Hence ( ).F H 
 
By 

(20), (4), and (5) we have  

2 ( )
( ) ( ) | ( , )

1
| ( ) (22)

X

F z z R z

d d z
z

 




  


 

 



  

Observe that the inequalities (16) and (17) 

are valid with R  in place of jQ  if X   and 

.z   Now fix  .z   , put ,iz e     and 

estimate the integrand in (22) by (16) if 4 ,   by 

(17) if 4 .    The integral in (22) is then seen to 

be less than the sum of 

4

0

50 1
2 808 (23)d



   
 

 
  

 
   

And  
2

24

4,000
2 2,000 . (24)d




   





   

Hence (22) yields 

( ) ( ) 6,000 ( ) ( ) (25)F z z z    

  

Since ( ), ,F H K    and 
2S K  is 

connected, Runge’s theorem shows that F  can be 

uniformly approximated on K  by polynomials. 

Hence (3) and (25) show that (2) can be satisfied. 

This completes the proof. 

 

Lemma 1.0 : Suppose 
' 2( ),cf C R  the space of all 

continuously differentiable functions in the plane, 
with compact support. Put  

1
(1)

2
i

x y

  
   

  
  

Then the following ―Cauchy formula‖ holds: 

2

1 ( )( )
( )

( ) (2)

R

f
f z d d

z

i


 

 

  


 



 


  

Proof: This may be deduced from Green’s theorem. 

However, here is a simple direct proof: 
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Put ( , ) ( ), 0,ir f z re r      real 

 If ,iz re     the chain rule gives 

1
( )( ) ( , ) (3)

2

i i
f e r

r r

  


  
     

  

The right side of (2) is therefore equal to the limit, as 

0,   of 

 

2

0

1
(4)

2

i
d dr

r r





 




   
  

  
 

 

 

 

For each 0,r   is periodic in ,  with period 

2 . The integral of /    is therefore 0, and (4) 

becomes 

2 2

0 0

1 1
( , ) (5)

2 2
d dr d

r

 




    

 

 
 

  
  

As 0, ( , ) ( )f z      uniformly.  This 

gives (2)  

 

If X a   and  1,... nX k X X  , then 

X X X a      , and so A  satisfies the 

condition ( ) . Conversely, 

,

( )( ) ( ),
nA

c X d X c d X finite sums   

   

  



 

  


  

and so if A  satisfies ( ) , then the subspace 

generated by the monomials ,X a   , is an 

ideal. The proposition gives a classification of the 

monomial ideals in  1,... nk X X : they are in one 

to one correspondence with the subsets A  of 
n  

satisfying ( ) . For example, the monomial ideals in 

 k X  are exactly the ideals ( ), 1nX n  , and the 

zero ideal (corresponding to the empty set A ). We 

write |X A   for the ideal corresponding to 

A  (subspace generated by the ,X a   ). 

 

LEMMA 1.1.  Let S  be a subset of 
n . The the 

ideal a  generated by ,X S    is the monomial 

ideal corresponding to   

 | ,
df

n nA some S           

Thus, a monomial is in a  if and only if it is 

divisible by one of the , |X S    

PROOF.   Clearly A  satisfies   , and 

|a X A   . Conversely, if A  , then 

n    for some S , and 

X X X a     . The last statement follows 

from the fact that | nX X      . Let 

nA   satisfy   . From the geometry of  A , it 

is clear that there is a finite set of elements 

 1,... sS     of A such that  

 2| ,n

i iA some S          

(The 'i s  are the corners of A ) Moreover, 

|
df

a X A   is generated by the monomials 

,i

iX S
   . 

 

DEFINITION 1.0.   For a nonzero ideal a  in 

 1 ,..., nk X X , we let ( ( ))LT a  be the ideal 

generated by  

 ( ) |LT f f a   

 

LEMMA 1.2   Let a  be a nonzero ideal in  

 1 ,..., nk X X ; then ( ( ))LT a is a monomial 

ideal, and it equals 1( ( ),..., ( ))nLT g LT g  for 

some 1,..., ng g a . 

PROOF.   Since  ( ( ))LT a  can also be described as 

the ideal generated by the leading monomials (rather 

than the leading terms) of elements of a . 

 

THEOREM 1.2.  Every ideal a  in 

 1 ,..., nk X X is finitely generated; more 

precisely, 1( ,..., )sa g g  where 1,..., sg g are any 

elements of a  whose leading terms generate 

( )LT a   

PROOF.   Let f a . On applying the division 

algorithm, we find 

 1 1 1... , , ,...,s s i nf a g a g r a r k X X    

 , where either 0r   or no monomial occurring in it 

is divisible by any ( )iLT g . But 

i i
r f a g a   , and therefore 

1( ) ( ) ( ( ),..., ( ))sLT r LT a LT g LT g  , 

implies that every monomial occurring in r  is 

divisible by one in ( )iLT g . Thus 0r  , and 

1( ,..., )sg g g . 
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DEFINITION 1.1.   A finite subset 

 1,| ..., sS g g  of an ideal a  is a standard (

..

( )Gr obner bases for a  if 

1( ( ),..., ( )) ( )sLT g LT g LT a . In other words, 

S is a standard basis if the leading term of every 

element of a is divisible by at least one of the 

leading terms of the ig . 

 

THEOREM 1.3  The ring 1[ ,..., ]nk X X  is 

Noetherian i.e., every ideal is finitely generated. 

 

PROOF. For  1,n   [ ]k X  is a principal ideal 

domain, which means that every ideal is generated 

by single element. We shall prove the theorem by 

induction on n . Note that the obvious map 

1 1 1[ ,... ][ ] [ ,... ]n n nk X X X k X X   is an 

isomorphism – this simply says that every 

polynomial f  in n  variables 1,... nX X  can be 

expressed uniquely as a polynomial in nX  with 

coefficients in 1[ ,..., ]nk X X : 

1 0 1 1 1 1( ,... ) ( ,... ) ... ( ,... )r

n n n r nf X X a X X X a X X   

  

Thus the next lemma will complete the proof 

 

LEMMA 1.3.  If A  is Noetherian, then so also is 

[ ]A X   

PROOF.          For a polynomial 

 
1

0 1 0( ) ... , , 0,r r

r if X a X a X a a A a     

  r  is called the degree of f , and 0a  is its 

leading coefficient. We call 0 the leading coefficient 

of the polynomial 0.  Let a  be an ideal in 

[ ]A X . The leading coefficients of the polynomials 

in a  form an ideal 
'a  in A ,  and since A  is 

Noetherian, 
'a will be finitely generated. Let 

1,..., mg g  be elements of a  whose leading 

coefficients generate 
'a , and let r be the maximum 

degree of ig . Now let ,f a  and suppose f  has 

degree s r , say, ...sf aX   Then 
'a a  , 

and so we can write 

, ,i ii

i i

a b a b A

a leading coefficient of g

 




  

Now 

, deg( ),
is r

i i i if b g X r g


  has degree 

deg( )f  . By continuing in this way, we find that 

1mod( ,... )t mf f g g  With tf  a 

polynomial of degree t r . For each d r , let 

da  be the subset of A  consisting of 0 and the 

leading coefficients of all polynomials in a  of 

degree ;d  it is again an ideal in  A . Let 

,1 ,,...,
dd d mg g  be polynomials of degree d  whose 

leading coefficients generate da . Then the same 

argument as above shows that any polynomial df  in 

a  of degree d  can be written 

1 ,1 ,mod( ,... )
dd d d d mf f g g  With 1df   of 

degree 1d  . On applying this remark repeatedly 

we find that 

1 01,1 1, 0,1 0,( ,... ,... ,... )
rt r r m mf g g g g
   Hence 

       

1 01 1,1 1, 0,1 0,( ,... ,... ,..., ,..., )
rt m r r m mf g g g g g g
 

 

 and so the polynomials 
01 0,,..., mg g  generate a   

 

One of the great successes of category 

theory in computer science has been the 

development of a ―unified theory‖ of the 

constructions underlying denotational semantics. In 

the untyped  -calculus,  any term may appear in 

the function position of an application. This means 

that a model D of the  -calculus must have the 

property that given a term t  whose interpretation is 

,d D  Also, the interpretation of a functional 

abstraction like x . x  is most conveniently defined 

as a function from Dto D  , which must then be 

regarded as an element of D. Let 

 : D D D    be the function that picks out 

elements of D to  represent elements of  D D  

and  : D D D    be the function that maps 

elements of D to functions of D.  Since ( )f  is 

intended to represent the function f  as an element 

of D, it makes sense to require that ( ( )) ,f f    

that is, 
 D D

o id 


   Furthermore, we often 

want to view every element of D as representing 

some function from D to D and require that elements 

representing the same function be equal – that is   

( ( ))

D

d d

or

o id
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The latter condition is called extensionality. 

These conditions together imply that and   are 

inverses--- that is, D is isomorphic to the space of 

functions from D to D  that can be the interpretations 

of functional abstractions:  D D D   .Let us 

suppose we are working with the untyped 

calculus  , we need a solution ot the equation 

 ,D A D D    where A is some 

predetermined domain containing interpretations for 

elements of C.  Each element of D corresponds to 

either an element of A or an element of  ,D D  

with a tag. This equation can be solved by finding 

least fixed points of the function 

 ( )F X A X X    from domains to domains 

--- that is, finding domains X  such that 

 ,X A X X    and such that for any domain 

Y also satisfying this equation, there is an embedding 

of X to Y  --- a pair of maps 

R

f

f

X Y   

Such that   
R

X

R

Y

f o f id

f o f id




  

Where f g  means that 

f approximates g  in some ordering representing 

their information content. The key shift of 

perspective from the domain-theoretic to the more 

general category-theoretic approach lies in 
considering F not as a function on domains, but as a 

functor on a category of domains. Instead of a least 

fixed point of the function, F. 

 

Definition 1.3: Let K be a category and 

:F K K  as a functor. A fixed point of F is a 

pair (A,a), where A is a K-object and 

: ( )a F A A  is an isomorphism. A prefixed 

point of F is a pair (A,a), where A is a K-object and 

a is any arrow from F(A) to A 

Definition 1.4 : An chain  in a category K  is a 

diagram of the following form: 

1 2

1 2 .....
of f f

oD D D       

Recall that a cocone   of an chain    is a K-

object X and a collection of K –arrows 

 : | 0i iD X i    such that 1i i io f    for 

all 0i  . We sometimes write : X   as a 

reminder of the arrangement of ' s  components 

Similarly, a colimit : X  is a cocone with 

the property that if 
': X   is also a cocone 

then there exists a unique mediating arrow 
':k X X  such that for all 0,, i ii v k o  . 

Colimits of chains  are sometimes referred to 

as limco its . Dually, an 
op chain   in K is 

a diagram of the following form: 
1 2

1 2 .....
of f f

oD D D    
 
A cone 

: X   of an 
op chain    is a K-object X 

and a collection of K-arrows  : | 0i iD i   such 

that for all 10, i i ii f o    . An  
op -limit of 

an 
op chain     is a cone : X   with 

the property that if 
': X  is also a cone, then 

there exists a unique mediating arrow 
':k X X  

such that for all 0, i ii o k    . We write k  

(or just  ) for the distinguish initial object of K, 

when it has one, and A  for the unique arrow 

from   to each K-object A. It is also convenient to 

write 
1 2

1 2 .....
f f

D D    to denote all of   

except oD  and 0f . By analogy,  
 is  | 1i i  . 

For the images of   and   under F we write  

1 2( ) ( ) ( )

1 2( ) ( ) ( ) ( ) .....
oF f F f F f

oF F D F D F D      

and  ( ) ( ) | 0iF F i     

We write 
iF  for the i-fold iterated composition of F 

– that is, 
1 2( ) , ( ) ( ), ( ) ( ( ))oF f f F f F f F f F F f  

 ,etc. With these definitions we can state that every 

monitonic function on a complete lattice has a least 

fixed point: 

 

Lemma 1.4. Let K  be a category with initial object 

  and let :F K K  be a functor. Define the 

chain   by 
2

! ( ) (! ( )) (! ( ))
2

( ) ( ) .........
F F F F F

F F
     

        

If both : D 
 
and ( ) : ( ) ( )F F F D  

are colimits, then (D,d) is an intial F-algebra, where

: ( )d F D D
 
 is the mediating arrow from 

( )F 
 
 to the cocone 



 
 

 

 

Theorem 1.4 Let a DAG G given in which each node 

is a random variable, and let a discrete conditional 
probability distribution of each node given values of 

its parents in G be specified. Then the product of 
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these conditional distributions yields a joint 

probability distribution P of the variables, and (G,P) 

satisfies the Markov condition. 

 

Proof. Order the nodes according to an ancestral 

ordering. Let 1 2, ,........ nX X X be the resultant 

ordering. Next define.  

 

1 2 1 1

2 2 1 1

( , ,.... ) ( | ) ( | )...

.. ( | ) ( | ),

n n n n nP x x x P x pa P x Pa

P x pa P x pa

 
 

Where iPA is the set of parents of iX of in 

G and ( | )i iP x pa is the specified conditional 

probability distribution. First we show this does 

indeed yield a joint probability distribution. Clearly, 

1 20 ( , ,... ) 1nP x x x   for all values of the 

variables. Therefore, to show we have a joint 

distribution, as the variables range through all their 

possible values, is equal to one. To that end, 

Specified conditional distributions are the 

conditional distributions they notationally represent 

in the joint distribution. Finally, we show the 

Markov condition is satisfied. To do this, we need 

show for 1 k n   that  

whenever 

( ) 0, ( | ) 0

( | ) 0

( | , ) ( | ),

k k k

k k

k k k k k

P pa if P nd pa

and P x pa

then P x nd pa P x pa

 




 

Where kND is the set of nondescendents of 

kX of in G. Since k kPA ND , we need only 

show ( | ) ( | )k k k kP x nd P x pa . First for a 

given k , order the nodes so that all and only 

nondescendents of kX precede kX in the ordering. 

Note that this ordering depends on k , whereas the 

ordering in the first part of the proof does not. 

Clearly then 

 

 

 

1 2 1

1 2

, ,....

, ,....

k k

k k k n

ND X X X

Let

D X X X



 





 

follows 
kd    

 

We define the 
thm cyclotomic field to be the field 

  / ( ( ))mQ x x
 
Where ( )m x is the 

thm

cyclotomic polynomial.   / ( ( ))mQ x x  ( )m x  

has degree ( )m over Q since ( )m x has degree 

( )m . The roots of ( )m x  are just the primitive 

thm roots of unity, so the complex embeddings of 

  / ( ( ))mQ x x are simply the ( )m maps  

 : / ( ( )) ,

1 , ( , ) 1,

( ) ,

k m

k

k m

Q x x C

k m k m where

x



 



 





  

m being our fixed choice of primitive 
thm root of 

unity. Note that ( )k

m mQ  for every ;k it follows 

that ( ) ( )k

m mQ Q  for all k relatively prime to 

m . In particular, the images of the i coincide, so 

  / ( ( ))mQ x x is Galois over Q . This means that 

we can write ( )mQ  for   / ( ( ))mQ x x without 

much fear of ambiguity; we will do so from now on, 

the identification being .m x  One advantage of 

this is that one can easily talk about cyclotomic 

fields being extensions of one another,or 

intersections or compositums; all of these things 

take place considering them as subfield of .C  We 

now investigate some basic properties of cyclotomic 

fields. The first issue is whether or not they are all 
distinct; to determine this, we need to know which 

roots of unity lie in ( )mQ  .Note, for example, that 

if m is odd, then m is a 2 thm root of unity. We 

will show that this is the only way in which one can 

obtain any non-
thm roots of unity. 

 

LEMMA 1.5   If m divides n , then ( )mQ   is 

contained in ( )nQ   

PROOF. Since ,
n

m
m  we have ( ),m nQ 

so the result is clear 
 

LEMMA 1.6   If m and n are relatively prime, then  

  ( , ) ( )m n nmQ Q    

and 

           ( ) ( )m nQ Q Q    

(Recall the ( , )m nQ    is the compositum of 

( ) ( ) )m nQ and Q   

 

PROOF. One checks easily that m n  is a primitive 

thmn root of unity, so that  

( ) ( , )mn m nQ Q    

    ( , ) : ( ) : ( :

( ) ( ) ( );

m n m nQ Q Q Q Q Q

m n mn
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Since  ( ) : ( );mnQ Q mn  this implies that 

( , ) ( )m n nmQ Q  
 
We know that ( , )m nQ  

has degree ( )mn
 
over  Q , so we must have 

   ( , ) : ( ) ( )m n mQ Q n     

and 

 ( , ) : ( ) ( )m n mQ Q m     

 

 ( ) : ( ) ( ) ( )m m nQ Q Q m      

And thus that ( ) ( )m nQ Q Q    

 

PROPOSITION 1.2 For any m and n  

 

 ,
( , ) ( )m n m n

Q Q    

And  

( , )( ) ( ) ( );m n m nQ Q Q     

here  ,m n and  ,m n denote the least common 

multiple and the greatest common divisor of m and 

,n respectively. 

 

PROOF.    Write 1 1

1 1...... ....k ke fe f

k km p p and p p

where the ip are distinct primes. (We allow 

i ie or f to be zero) 

1 2
1 2

1 2
1 2

1 1
1 12

1 1
1 1

max( ) max( )1, ,1
1 1

( ) ( ) ( )... ( )

( ) ( ) ( )... ( )

( , ) ( )........ ( ) ( )... ( )

( ) ( )... ( ) ( )

( )....... (

e e ek
k

f f fk
k

e e f fk k
k

e f e fk k
k k

e ef k fk

m p p p

n p p p

m n p pp p

p p p p

p p

Q Q Q Q

and

Q Q Q Q

Thus

Q Q Q Q Q

Q Q Q Q

Q Q

   

   

     

   

 











 

max( ) max( )1, ,1
1 1........

,

)

( )

( );

e ef k fkp p

m n

Q

Q









 

 

An entirely similar computation shows that 

( , )( ) ( ) ( )m n m nQ Q Q   
 

 

Mutual information measures the information 

transferred when ix  is sent and iy  is received, and 

is defined as 

2

( )

( , ) log (1)
( )

i

i
i i

i

x
P

y
I x y bits

P x
  

In a noise-free channel, each iy is uniquely 

connected to the corresponding ix  , and so they 

constitute an input –output pair ( , )i ix y  for which 

 
2

1
( ) 1 ( , ) log

( )
i

i j
j i

x
P and I x y

y P x
  bits; 

that is, the transferred information is equal to the 

self-information that corresponds to the input ix
 
In a 

very noisy channel, the output iy and input ix would 

be completely uncorrelated, and so 

( ) ( )i
i

j

x
P P x

y
  and also ( , ) 0;i jI x y  that is, 

there is no transference of information. In general, a 

given channel will operate between these two 

extremes. The mutual information is defined 

between the input and the output of a given channel. 

An average of the calculation of the mutual 

information for all input-output pairs of a given 

channel is the average mutual information: 

2

. .

(

( , ) ( , ) ( , ) ( , ) log
( )

i

j

i j i j i j

i j i j i

x
P

y
I X Y P x y I x y P x y

P x

 
 

   
 
 

 

 bits per symbol . This calculation is done over the 

input and output alphabets. The average mutual 
information. The following expressions are useful 

for modifying the mutual information expression: 

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ji
i j j i

j i

j
j i

ii

i
i j

ji

yx
P x y P P y P P x

y x

y
P y P P x

x

x
P x P P y

y

 









 

Then 
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.

2

.

2

.

2

.

2

2

( , ) ( , )

1
( , ) log

( )

1
( , ) log

( )

1
( , ) log

( )

1
( ) ( ) log

( )

1
( ) log ( )

( )

( , ) ( ) ( )

i j

i j

i j

i j i

i j
ii j

j

i j

i j i

i
j

ji i

i

i i

I X Y P x y

P x y
P x

P x y
x

P
y

P x y
P x

x
P P y

y P x

P x H X
P x

XI X Y H X H
Y



 
  

 

 
 

  
 
 

 
 
 

 
  

 



 













 

Where 
2,

1
( ) ( , ) log

( )
i ji j

i

j

XH P x y
Y x

P
y

  

is usually called the equivocation. In a sense, the 

equivocation can be seen as the information lost in 

the noisy channel, and is a function of the backward 

conditional probability. The observation of an output 

symbol jy provides ( ) ( )XH X H
Y

  bits of 

information. This difference is the mutual 

information of the channel. Mutual Information: 

Properties Since 

( ) ( ) ( ) ( )ji
j i

j i

yx
P P y P P x

y x
  

The mutual information fits the condition 

( , ) ( , )I X Y I Y X  

And by interchanging input and output it is also true 

that 

( , ) ( ) ( )YI X Y H Y H
X

   

Where 

2

1
( ) ( ) log

( )
j

j j

H Y P y
P y

  

This last entropy is usually called the noise 

entropy. Thus, the information transferred through 

the channel is the difference between the output 

entropy and the noise entropy. Alternatively, it can 

be said that the channel mutual information is the 

difference between the number of bits needed for 

determining a given input symbol before knowing 

the corresponding output symbol, and the number of 
bits needed for determining a given input symbol 

after knowing the corresponding output symbol 

( , ) ( ) ( )XI X Y H X H
Y

   

As the channel mutual information 

expression is a difference between two quantities, it 

seems that this parameter can adopt negative values. 

However, and is spite of the fact that for some 

, ( / )j jy H X y  can be larger than ( )H X , this is 

not possible for the average value calculated over all 

the outputs: 

2 2

, ,

( )
( , )

( , ) log ( , ) log
( ) ( ) ( )

i

j i j

i j i j

i j i ji i j

x
P

y P x y
P x y P x y

P x P x P y
 

 
Then 

,

( ) ( )
( , ) ( , ) 0

( , )

i j

i j

i j i j

P x P y
I X Y P x y

P x y
    

Because this expression is of the form 

2

1

log ( ) 0
M

i
i

i i

Q
P

P

  

The above expression can be applied due to 

the factor ( ) ( ),i jP x P y which is the product of two 

probabilities, so that it behaves as the quantity iQ , 

which in this expression is a dummy variable that 

fits the condition 1ii
Q  . It can be concluded 

that the average mutual information is a non-

negative number. It can also be equal to zero, when 

the input and the output are independent of each 

other. A related entropy called the joint entropy is 

defined as 

2

,

2

,

2

,

1
( , ) ( , ) log

( , )

( ) ( )
( , ) log

( , )

1
( , ) log

( ) ( )

i j

i j i j

i j

i j

i j i j

i j

i j i j

H X Y P x y
P x y

P x P y
P x y

P x y

P x y
P x P y













 

 
Theorem 1.5: Entropies of the binary erasure 

channel (BEC) The BEC is defined with an alphabet 

of two inputs and three outputs, with symbol 

probabilities.  

1 2( ) ( ) 1 ,P x and P x    and transition 

probabilities 

 
3 2

2 1

3

1

1

2

3

2

( ) 1 ( ) 0,

( ) 0

( )

( ) 1

y y
P p and P

x x

y
and P

x

y
and P p

x

y
and P p

x

  





 

 

 

Lemma 1.7. Given an arbitrary restricted time-

discrete, amplitude-continuous channel whose 
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restrictions are determined by sets nF and whose 

density functions exhibit no dependence on the state

s , let n be a fixed positive integer, and ( )p x an 

arbitrary probability density function on Euclidean 

n-space. ( | )p y x for the density 

1 1( ,..., | ,... )n n np y y x x and nF for F
. 

For any 

real number a, let 

( | )
( , ) : log (1)

( )

p y x
A x y a

p y

 
  
 

 

Then for each positive integer u , there is a code 

( , , )u n  such that 

   ( , ) (2)aue P X Y A P X F     

 

Where 

 

 

( , ) ... ( , ) , ( , ) ( ) ( | )

... ( )

A

F

P X Y A p x y dxdy p x y p x p y x

and

P X F p x dx

  

 

 

 
 

Proof: A sequence 
(1)x F such that 

 
 

1

(1)| 1

: ( , ) ;

x

x

P Y A X x

where A y x y A





   


 

Choose the decoding set 1B to be (1)x
A . Having 

chosen 
(1) ( 1),........, kx x 

and 1 1,..., kB B  , select 

kx F such that 

( )

1
( )

1

| 1 ;k

k
k

ix
i

P Y A B X x 




 
     

 


 

 

Set ( )

1

1
k

k

k ix i
B A B




  , If the process does not 

terminate in a finite number of steps, then the 

sequences 
( )ix and decoding sets , 1, 2,..., ,iB i u

form the desired code. Thus assume that the process 

terminates after t  steps. (Conceivably 0t  ). We 

will show t u  by showing that  

   ( , )ate P X Y A P X F      . We 

proceed as follows.  

Let 

 

1

( , )

. ( 0, ).

( , ) ( , )

( ) ( | )

( ) ( | ) ( )

x

x

t

jj

x y A

x y A

x y B A x

B B If t take B Then

P X Y A p x y dx dy

p x p y x dy dx

p x p y x dy dx p x








 

  

 



 



 

  



 

E. Algorithms 
Ideals.    Let A be a ring. Recall that an ideal a in A 

is a subset such that a is subgroup of A regarded as a 

group under addition; 

 
,a a r A ra A   

   
The ideal generated by a subset S of A is the 

intersection of all ideals A containing a ----- it is 

easy to verify that this is in fact an ideal, and that it 

consist of all finite sums of the form i i
rs  with 

,i ir A s S  . When  1,....., mS s s , we shall 

write 1( ,....., )ms s for the ideal it generates. 

Let a and b be ideals in A. The set 

 | ,a b a a b b    is an ideal, denoted by 

a b . The ideal generated by   | ,ab a a b b 

is denoted by ab . Note that ab a b  . Clearly 

ab consists of all finite sums i i
a b  with ia a  

and ib b , and if 1( ,..., )ma a a  and 

1( ,..., )nb b b , then 

1 1( ,..., ,..., )i j m nab a b a b a b .Let a  be an ideal 

of A. The set of cosets of a in A forms a ring /A a
, and a a a  is a homomorphism 

: /A A a  . The map 
1( )b b   is a one to 

one correspondence between the ideals of /A a  and 

the ideals of A  containing a An ideal p  if prime if 

p A  and ab p a p    or b p . Thus p  

is prime if and only if /A p  is nonzero and has the 

property that  0, 0 0,ab b a      i.e., 

/A p is an integral domain. An ideal m  is 

maximal if |m A  and there does not exist an ideal 

n  contained strictly between m and A . Thus m is 

maximal if and only if /A m  has no proper nonzero 

ideals, and so is a field. Note that m  maximal   

m prime. The ideals of A B  are all of the form 

a b , with a  and b  ideals in A  and B . To see 

this, note that if c  is an ideal in  A B  and 
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( , )a b c , then ( ,0) ( , )(1,0)a a b c   and 

(0, ) ( , )(0,1)b a b c  . This shows that 

c a b   with  

 | ( , )a a a b c some b b  
  

and  

  
 | ( , )b b a b c some a a  

 
 

Let A  be a ring. An A -algebra is a ring B  together 

with a homomorphism :Bi A B . A 

homomorphism of A -algebra B C  is a 

homomorphism of rings : B C   such that 

( ( )) ( )B Ci a i a   for all . An  A -algebra 

B is said to be finitely generated ( or of finite-type 

over A) if there exist elements 1,..., nx x B  such 

that every element of B can be expressed as a 

polynomial in the ix  with coefficients in ( )i A , i.e., 

such that the homomorphism  1,..., nA X X B  

sending iX  to  ix is surjective.  A ring 

homomorphism A B  is finite, and B  is finitely 

generated as an A-module. Let k  be a field, and let 

A be a k -algebra. If 1 0  in A , then the map 

k A  is injective, we can identify k with its 

image, i.e., we can regard k as a subring of A  . If 

1=0 in a ring R, the R is the zero ring, i.e.,  0R 

. Polynomial rings.  Let  k  be a field. A monomial 

in 1,..., nX X  is an expression of the form 

1

1 ... ,naa

n jX X a N  . The total degree of the 

monomial is 
ia . We sometimes abbreviate it by 

1, ( ,..., ) n

nX a a   
. 

The elements of the 

polynomial ring  1,..., nk X X  are finite sums

1

1 1.... 1 ....... , ,n

n n

aa

a a n a a jc X X c k a  
   

With the obvious notions of equality, addition and 

multiplication. Thus the monomials from basis for  

 1,..., nk X X  as a k -vector space. The ring 

 1,..., nk X X is an integral domain, and the only 

units in it are the nonzero constant polynomials. A 

polynomial 1( ,..., )nf X X  is irreducible if it is 

nonconstant and has only the obvious factorizations, 

i.e., f gh g   or h  is constant. Division in 

 k X . The division algorithm allows us to divide a 

nonzero polynomial into another: let f  and g  be 

polynomials in  k X with 0;g   then there exist 

unique polynomials  ,q r k X  such that 

f qg r   with either 0r   or deg r  < deg g . 

Moreover, there is an algorithm for deciding whether 

( )f g , namely, find r and check whether it is 

zero. Moreover, the Euclidean algorithm allows to 

pass from finite set of generators for an ideal in 

 k X to a single generator by successively 

replacing each pair of generators with their greatest 

common divisor. 

 

 (Pure) lexicographic ordering (lex). Here 

monomials are ordered by lexicographic(dictionary) 

order. More precisely, let 1( ,... )na a   and 

1( ,... )nb b   be two elements of 
n ; then  

   and  X X  (lexicographic ordering) if, 

in the vector difference    , the left most 

nonzero entry is positive. For example,  

 
2 3 4 3 2 4 3 2;XY Y Z X Y Z X Y Z  . Note that 

this isn’t quite how the dictionary would order them: 

it would put XXXYYZZZZ  after XXXYYZ . 

Graded reverse lexicographic order (grevlex). Here 

monomials are ordered by total degree, with ties 

broken by reverse lexicographic ordering. Thus, 

   if 
i ia b  , or 

i ia b   and in 

   the right most nonzero entry is negative. For 

example:  
4 4 7 5 5 4X Y Z X Y Z  (total degree greater) 

5 2 4 3 5 4 2,XY Z X YZ X YZ X YZ 
. 

 

Orderings on  1,... nk X X  . Fix an ordering on 

the monomials in  1,... nk X X . Then we can write 

an element f  of  1,... nk X X  in a canonical 

fashion, by re-ordering its elements in decreasing 

order. For example, we would write 
2 2 3 2 24 4 5 7f XY Z Z X X Z   

  
as 

3 2 2 2 25 7 4 4 ( )f X X Z XY Z Z lex    
  

or 
2 2 2 3 24 7 5 4 ( )f XY Z X Z X Z grevlex   

  

Let  1,..., na X k X X

   , in decreasing 

order: 

0 1

0 1 0 1 0..., ..., 0f a X X
 

         

  
Then we define. 

 The multidegree of 
f

 to be multdeg(
f

)= 0 ;  

a A
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 The leading coefficient of 
f

to be LC(
f

)=
0

a ; 

 The leading monomial of  
f

to be LM(
f

) = 
0X


; 

 The leading term of 
f

to be LT(
f

) = 0

0
a X



   

For the polynomial 
24 ...,f XY Z   the 

multidegree is (1,2,1), the leading coefficient is 4, 

the leading monomial is 
2XY Z , and the leading 

term is  
24XY Z . The division algorithm in 

 1,... nk X X . Fix a monomial ordering in 
2 . 

Suppose given a polynomial f  and an ordered set 

1( ,... )sg g  of polynomials; the division algorithm 

then constructs polynomials 1,... sa a  and r   such 

that 1 1 ... s sf a g a g r      Where either 

0r   or no monomial in r  is divisible by any of 

1( ),..., ( )sLT g LT g   Step 1: If 

1( ) | ( )LT g LT f , divide 1g  into f  to get 

 1 1 1 1

1

( )
, ,...,

( )
n

LT f
f a g h a k X X

LT g
   

 

If 1( ) | ( )LT g LT h , repeat the process until  

1 1 1f a g f    (different 1a ) with 1( )LT f  not 

divisible by 1( )LT g . Now divide 2g  into 1f , and 

so on, until 1 1 1... s sf a g a g r      With 

1( )LT r  not divisible by any 1( ),... ( )sLT g LT g   

Step 2: Rewrite 1 1 2( )r LT r r  , and repeat Step 1 

with 2r  for f : 

1 1 1 3... ( )s sf a g a g LT r r       (different 

'ia s  )   Monomial ideals. In general, an ideal a  

will contain a polynomial without containing the 

individual terms of the polynomial; for example, the 

ideal 
2 3( )a Y X   contains 

2 3Y X but not 

2Y  or 
3X . 

 

DEFINITION 1.5. An ideal a  is monomial if 

c X a X a 

     

 all   with 0c  .  

PROPOSITION 1.3. Let a be a monomial ideal, and 

let  |A X a  . Then A satisfies the 

condition , ( )nA           

And a  is the k -subspace of  1,..., nk X X  

generated by the ,X A   . Conversely, of A  is 

a subset of 
n  satisfying   , then the k-subspace  

a  of  1,..., nk X X  generated by  |X A 

is a monomial ideal. 

 

PROOF.  It is clear from its definition that a 

monomial ideal a  is the  k -subspace of 

 1,..., nk X X
  

generated by the set of monomials it contains. If 

X a 
 and 

 1,..., nX k X X 
 . 

   

If a permutation is chosen uniformly and at random 

from the !n  possible permutations in ,nS  then the 

counts 
( )n

jC  of cycles of length j  are dependent 

random variables. The joint distribution of 
( ) ( ) ( )

1( ,..., )n n n

nC C C  follows from Cauchy’s 

formula, and is given by 

( )

1 1

1 1 1
[ ] ( , ) 1 ( ) , (1.1)

! !

j

nn
cn

j

j j j

P C c N n c jc n
n j c 

 
    

 
 

  

for 
nc  .  

 

Lemma1.7 For nonnegative integers 

1,...,

[ ]( )

11 1

,

1
( ) 1 (1.4)

j

j

n

m
n n n

mn

j j

jj j

m m

E C jm n
j  

     
             

 

  

Proof.   This can be established directly by 

exploiting cancellation of the form 
[ ] !/ 1/ ( )!jm

j j j jc c c m    when ,j jc m  which 

occurs between the ingredients in Cauchy’s formula 

and the falling factorials in the moments. Write 

jm jm . Then, with the first sum indexed by 

1( ,... ) n

nc c c    and the last sum indexed by  

1( ,..., ) n

nd d d    via the correspondence 

,j j jd c m   we have  

[ ] [ ]( ) ( )

1 1

[ ]

: 1 1

11 1

( ) [ ] ( )

( )
1

!

1 1
1

( )!

j j

j

j

j j

j j

n n
m mn n

j j

cj j

m
nn

j

j c
c c m for all j j j j

n nn

jm d
d jj j j

E C P C c c

c
jc n

j c

jd n m
j j d

 

  

 

 
  

 

 
  

 

 
   

 

 

  

  

  

This last sum simplifies to the indicator 1( ),m n  

corresponding to the fact that if 0,n m   then 
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0jd   for ,j n m   and a random permutation 

in n mS   must have some cycle structure 

1( ,..., )n md d  . The moments of 
( )n

jC   follow 

immediately as 

 ( ) [ ]( ) 1 (1.2)n r r

jE C j jr n    

We note for future reference that (1.4) can also be 

written in the form  

[ ] [ ]( )

11 1

( ) 1 , (1.3)j j

n n n
m mn

j j j

jj j

E C E Z jm n
 

     
      

    
 

  

Where the jZ  are independent Poisson-distribution 

random variables that satisfy ( ) 1/jE Z j   

 

The marginal distribution of cycle counts provides 

a formula for the joint distribution of the cycle 

counts ,n

jC  we find the distribution of 
n

jC  using a 

combinatorial approach combined with the 

inclusion-exclusion formula. 

 

Lemma  1.8.   For 1 ,j n   

 
[ / ]

( )

0

[ ] ( 1) (1.1)
! !

k ln j k
n l

j

l

j j
P C k

k l

 



     

Proof.     Consider the set I  of all possible cycles of 

length ,j  formed with elements chosen from 

 1,2,... ,n  so that 
[ ]/j jI n . For each ,I   

consider the ―property‖ G  of having ;  that is,  

G is the set of permutations nS   such that   

is one of the cycles of .  We then have 

( )!,G n j   since the elements of  1,2,...,n  

not in   must be permuted among themselves. To 

use the inclusion-exclusion formula we need to 

calculate the term ,rS  which is the sum of the 

probabilities of the r -fold intersection of properties, 

summing over all sets of r distinct properties. There 

are two cases to consider. If the r properties are 
indexed by r cycles having no elements in common, 

then the intersection specifies how rj  elements are 

moved by the permutation, and there are 

( )!1( )n rj rj n   permutations in the intersection. 

There are 
[ ] / ( !)rj rn j r  such intersections. For the 

other case, some two distinct properties name some 
element in common, so no permutation can have 

both these properties, and the r -fold intersection is 

empty. Thus 

[ ]

( )!1( )

1 1
1( )

! ! !

r

rj

r r

S n rj rj n

n
rj n

j r n j r

  

  
  

Finally, the inclusion-exclusion series for the 

number of permutations having exactly k  properties 

is 

,

0

( 1)l

k l

l

k l
S

l




 
  

 
   

Which simplifies to (1.1) Returning to the original 

hat-check problem, we substitute j=1 in (1.1) to 

obtain the distribution of the number of fixed points 

of a random permutation. For 0,1,..., ,k n   

( )

1

0

1 1
[ ] ( 1) , (1.2)

! !

n k
n l

l

P C k
k l





     

and the moments of 
( )

1

nC  follow from (1.2) with 

1.j   In particular, for  2,n   the mean and 

variance of 
( )

1

nC are both equal to 1. The joint 

distribution of 
( ) ( )

1( ,..., )n n

bC C  for any 1 b n   

has an expression similar to (1.7); this too can be 
derived by inclusion-exclusion. For any 

1( ,..., ) b

bc c c    with ,im ic   

1

( ) ( )

1

...

01 1

[( ,..., ) ]

1 1 1 1
( 1) (1.3)

! !

i i

b

i

n n

b

c lb b
l l

l withi ii i
il n m

P C C c

i c i l

 

 

 



     
     

     


 

  

The joint moments of the first b  counts 
( ) ( )

1 ,...,n n

bC C  can be obtained directly from (1.2) 

and (1.3) by setting 1 ... 0b nm m      

 

The limit distribution of cycle counts 

It follows immediately from Lemma 1.2 that for 

each fixed ,j  as ,n  

( ) 1/[ ] , 0,1,2,...,
!

k
n j

j

j
P C k e k

k


     

So that 
( )n

jC converges in distribution to a random 

variable jZ  having a Poisson distribution with 

mean 1/ ;j  we use the notation 
( )n

j d jC Z  

where (1/ )j oZ P j   to describe this. Infact, the 

limit random variables are independent. 

 

Theorem 1.6   The process of cycle counts 

converges in distribution to a Poisson process of   

with intensity 
1j . That is, as ,n   

( ) ( )

1 2 1 2( , ,...) ( , ,...) (1.1)n n

dC C Z Z
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Where the , 1, 2,...,jZ j   are independent 

Poisson-distributed random variables with  

1
( )jE Z

j
   

Proof.  To establish the converges in distribution one 

shows that for each fixed 1,b   as ,n   

 
( ) ( )

1 1[( ,..., ) ] [( ,..., ) ]n n

b bP C C c P Z Z c     

 

Error rates 

The proof of Theorem says nothing about the rate of 

convergence. Elementary analysis can be used to 

estimate this rate when 1b  . Using properties of 

alternating series with decreasing terms, for 

0,1,..., ,k n   

( )

1 1

1 1 1
( ) [ ] [ ]

! ( 1)! ( 2)!

1

!( 1)!

nP C k P Z k
k n k n k

k n k

    
   


 

   

 

It follows that  
1 1

( )

1 1

0

2 2 1
[ ] [ ] (1.11)

( 1)! 2 ( 1)!

n nn
n

k

n
P C k P Z k

n n n

 




    

  
   

Since 
1

1

1 1 1
[ ] (1 ...) ,

( 1)! 2 ( 2)( 3) ( 1)!

e
P Z n

n n n n n



     
    

  

We see from (1.11) that the total variation distance 

between the distribution 
( )

1( )nL C  of 
( )

1

nC  and the 

distribution 1( )L Z  of 1Z
 

Establish the asymptotics of 
( )( )n

nA C     under 

conditions 0( )A  and 01( ),B  where 

 
'

( ) ( )

1 1

( ) 0 ,

i i

n n

n ij

i n r j r

A C C
    

  
 

and 
''( / ) 1 ( )g

i i idr r O i     as ,i   for 

some 
' 0.g    We start with the expression 

'

'
( ) 0

0

0

1

1

[ ( ) ]
[ ( )]

[ ( ) ]

1 (1 ) (1.1)

i i

n m
n

m

i

i n i
r j r

P T Z n
P A C

P T Z n

E
ir



 

  






 
  

 


  

  

'

0

1 1

1

1 '

1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.2)

n

i

P T Z n

d
i d i d

n

O n n


 



 







 
   

 



   

and 

  

'

0

1 1

1

1

1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.3)

n

i

P T Z n

d
i d i d

n

O n n


 



 







 
   

 



  

Where 
 
'

1,2,7
( )n  refers to the quantity 

derived from 
'Z . It thus follows that 

( ) (1 )[ ( )]n d

nP A C Kn    for a constant K , 

depending on Z  and the 
'

ir  and computable 

explicitly from (1.1) – (1.3), if Conditions 0( )A  and 

01( )B  are satisfied and if 
'

( )g

i O i    from some 

' 0,g   since, under these circumstances, both 

 
1 '

1,2,7
( )n n  and  

 
1

1,2,7
( )n n  tend to zero as 

.n   In particular, for polynomials and square 

free polynomials, the relative error in this asymptotic 

approximation is of order 
1n

 if 
' 1.g    

 

For 0 /8b n   and 0 ,n n  with 0n   

 7,7

( ( [1, ]), ( [1, ]))

( ( [1, ]), ( [1, ]))

( , ),

TV

TV

d L C b L Z b

d L C b L Z b

n b





 

  

Where 
 7,7

( , ) ( / )n b O b n   under Conditions 

0 1( ), ( )A D  and 11( )B
 
Since, by the Conditioning 

Relation, 

0 0( [1, ] | ( ) ) ( [1, ] | ( ) ),b bL C b T C l L Z b T Z l  
 

  

It follows by direct calculation that 

0 0

0

0

( ( [1, ]), ( [1, ]))

( ( ( )), ( ( )))

max [ ( ) ]

[ ( ) ]
1 (1.4)

[ ( ) ]

TV

TV b b

b
A

r A

bn

n

d L C b L Z b

d L T C L T Z

P T Z r

P T Z n r

P T Z n





 

  
 

 



 

  

Suppressing the argument Z  from now on, we thus 

obtain  
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( ( [1, ]), ( [1, ]))TVd L C b L Z b
 

 

0

0 0

[ ]
[ ] 1

[ ]

bn
b

r n

P T n r
P T r

P T n 

  
   

 
  

[ /2]

0
0

/2 0 0

[ ]
[ ]

[ ]

n

b
b

r n r b

P T r
P T r

P T n 


  


   

0

0

[ ]( [ ] [ ]
n

b bn bn

s

P T s P T n s P T n r
 

 
       
 


 
[ /2]

0 0

/2 0

[ ] [ ]
n

b b

r n r

P T r P T r
 

      

 [ /2]

0

0 0

[ /2]

0 0

0 [ /2] 1

[ ] [ ]
[ ]

[ ]

[ ] [ ] [ ] / [ ]

n
bn bn

b

s n

n n
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 The first sum is at most 
1

02 ;bn ET
the third is 

bound by 

 

0 0
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n
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Hence we may take 

 

 

 

10.81

07,7

10.5(1)

6 ( )
( , ) 2 ( ) 1

[0,1]

6
( / 2, ) (1.5)

[0,1]

b

n
n b n ET Z P

P

n b
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Required order under Conditions 

0 1( ), ( )A D  and 11( ),B  if ( ) .S    If not, 

   10.8
n

 can be replaced by    10.11
n

in the 

above, which has the required order, without the 

restriction on the ir  implied by ( )S   . 

Examining the Conditions  0 1( ), ( )A D  and 11( ),B it 

is perhaps surprising to find that 11( )B  is required 

instead of just 01( );B  that is, that we should need 

1

2
( )

a

ill
l O i 


   to hold for some 1 1a  . A 

first observation is that a similar problem arises with 

the rate of decay of 1i  as well. For this reason, 1n  

is replaced by 1n


. This makes it possible to replace 

condition 1( )A  by the weaker pair of conditions 

0( )A and 1( )D in the eventual assumptions needed 

for 
   7,7

,n b  to be of order ( / );O b n   the 

decay rate requirement of order 
1i  

 is shifted from 

1i  itself to its first difference. This is needed to 

obtain the right approximation error for the random 

mappings example. However, since all the classical 

applications make far more stringent assumptions 

about the 1, 2,i l   than are made in 11( )B . The 

critical point of the proof is seen where the initial 

estimate of the difference
( ) ( )[ ] [ 1]m m

bn bnP T s P T s    . The factor 

 10.10
( ),n  which should be small, contains a far 

tail element from 1n


 of the form 1 1( ) ( ),n u n   

which is only small if 1 1,a   being otherwise of 

order 11( )aO n  
 for any 0,   since 2 1a   is 

in any case assumed. For / 2,s n  this gives rise 

to a contribution of order  11( )aO n   
 in the 

estimate of the difference 

[ ] [ 1],bn bnP T s P T s     which, in the 

remainder of the proof, is translated into a 

contribution of order 11( )aO tn   
for differences 

of the form [ ] [ 1],bn bnP T s P T s     finally 

leading to a contribution of order 1abn  
 for any 

0   in 
 7.7

( , ).n b  Some improvement would 

seem to be possible, defining the function g  by 

   ( ) 1 1 ,
w s w s t

g w
  

    differences that are of 

the form [ ] [ ]bn bnP T s P T s t     can be 

directly estimated, at a cost of only a single 

contribution of the form 1 1( ) ( ).n u n   Then, 

iterating the cycle, in which one estimate of a 

difference in point probabilities is improved to an 

estimate of smaller order, a bound of the form  

112[ ] [ ] ( )a

bn bnP T s P T s t O n t n        

 for any 0   could perhaps be attained, leading to 

a final error estimate in order  11( )aO bn n    for 

any 0  , to replace  7.7
( , ).n b  This would be 

of the ideal order ( / )O b n for large enough ,b  but 

would still be coarser for small .b   
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With b and n  as in the previous section, we wish to 

show that  

 

1

0 0

7,8

1
( ( [1, ]), ( [1, ])) ( 1) 1

2

( , ),

TV b bd L C b L Z b n E T ET

n b





   



 Where 
 

121 1

7.8
( , ) ( [ ])n b O n b n b n        

for any 0   under Conditions 0 1( ), ( )A D  and 

12( ),B with 12 . The proof uses sharper estimates. 

As before, we begin with the formula  
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[ ]
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Now we observe that  
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We have   
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The approximation in (1.2) is further simplified by 

noting that  
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and then by observing that  
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Combining the contributions of (1.2) –(1.3), we thus 

find tha
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The quantity 
 7.8

( , )n b is seen to be of the order 

claimed under Conditions 0 1( ), ( )A D  and 12( )B , 

provided that ( ) ;S     this supplementary 

condition can be removed if  10.8
( )n

 is replaced 

by  10.11
( )n

   in the definition of 
 7.8

( , )n b , has 

the required order without the restriction on the ir  

implied by assuming that ( ) .S   Finally, a 

direct calculation now shows that 

0 0

0 0

0 0

[ ] [ ]( )(1 )

1
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r s
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Example 1.0.  Consider the point 

(0,...,0) nO   . For an arbitrary vector r , the 

coordinates of the point x O r   are equal to the 

respective coordinates of the vector 
1: ( ,... )nr x x x  and 

1( ,..., )nr x x . The vector 

r such as in the example is called the position vector 

or the radius vector of the point x  . (Or, in greater 

detail: r  is the radius-vector of x  w.r.t an origin 

O). Points are frequently specified by their radius-

vectors. This presupposes the choice of O as the 

―standard origin‖.   Let us summarize. We have 

considered 
n  and interpreted its elements in two 

ways: as points and as vectors. Hence we may say 

that we leading with the two copies of  :n  
n = 

{points},      
n = {vectors}  

Operations with vectors: multiplication by a 

number, addition. Operations with points and 
vectors: adding a vector to a point (giving a point), 

subtracting two points (giving a vector). 
n treated 

in this way is called an n-dimensional affine space. 
(An ―abstract‖ affine space is a pair of sets , the set 

of points and the set of vectors so that the operations 

as above are defined axiomatically). Notice that 

vectors in an affine space are also known as ―free 

vectors‖. Intuitively, they are not fixed at points and 

―float freely‖ in space. From 
n considered as an 

affine space we can precede in two opposite 

directions: 
n  as an Euclidean space  

n as an 

affine space  
n as a manifold.Going to the left 

means introducing some extra structure which will 

make the geometry richer. Going to the right means 

forgetting about part of the affine structure; going 

further in this direction will lead us to the so-called 

―smooth (or differentiable) manifolds‖. The theory 

of differential forms does not require any extra 

geometry. So our natural direction is to the right. 

The Euclidean structure, however, is useful for 

examples and applications. So let us say a few words 

about it: 

 

Remark 1.0.  Euclidean geometry.  In 
n  

considered as an affine space we can already do a 

good deal of geometry. For example, we can 

consider lines and planes, and quadric surfaces like 
an ellipsoid. However, we cannot discuss such 

things as ―lengths‖, ―angles‖ or ―areas‖ and 

―volumes‖. To be able to do so, we have to introduce 

some more definitions, making 
n a Euclidean 

space. Namely, we define the length of a vector 
1( ,..., )na a a  to be  

1 2 2: ( ) ... ( ) (1)na a a     

After that we can also define distances between 

points as follows: 

( , ) : (2)d A B AB


  

One can check that the distance so defined possesses 

natural properties that we expect: is it always non-

negative and equals zero only for coinciding points; 

the distance from A to B is the same as that from B 

to A (symmetry); also, for three points, A, B and C, 

we have ( , ) ( , ) ( , )d A B d A C d C B   (the 

―triangle inequality‖). To define angles, we first 

introduce the scalar product of two vectors 

 
1 1( , ) : ... (3)n na b a b a b     

Thus ( , )a a a  . The scalar product is also 

denote by dot: . ( , )a b a b , and hence is often 

referred to as the ―dot product‖ . Now, for nonzero 

vectors, we define the angle between them by the 

equality 

( , )
cos : (4)

a b

a b
    

The angle itself is defined up to an integral multiple 

of 2  . For this definition to be consistent we have 

to ensure that the r.h.s. of (4) does not exceed 1 by 

the absolute value. This follows from the inequality 
2 22( , ) (5)a b a b   

known as the Cauchy–Bunyakovsky–Schwarz 

inequality (various combinations of these three 

names are applied in different books). One of the 
ways of proving (5) is to consider the scalar square 

of the linear combination ,a tb  where t R . As  

( , ) 0a tb a tb    is a quadratic polynomial in t  

which is never negative, its discriminant must be 

less or equal zero. Writing this explicitly yields (5). 

The triangle inequality for distances also follows 

from the inequality (5). 
 

Example 1.1.    Consider the function ( ) if x x  

(the i-th coordinate). The linear function 
idx  (the 

differential of 
ix  ) applied to an arbitrary vector h  

is simply 
ih .From these examples follows that we 

can rewrite df  as 

1

1
... , (1)n

n

f f
df dx dx

x x

 
  
 

  

which is the standard form. Once again: the partial 

derivatives in (1) are just the coefficients (depending 

on x ); 
1 2, ,...dx dx  are linear functions giving on 

an arbitrary vector h  its coordinates 
1 2, ,...,h h  

respectively. Hence 
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1

( ) 1
( )( )

... , (2)

hf x

n

n

f
df x h h

x

f
h

x


   







 

 

Theorem   1.7.     Suppose we have a parametrized 

curve ( )t x t  passing through 0

nx   at 

0t t  and with the velocity vector 0( )x t   Then  

0 0 0

( ( ))
( ) ( ) ( )( ) (1)

df x t
t f x df x

dt
   

  

Proof.  Indeed, consider a small increment of the 

parameter 0 0:t t t t  , Where 0t  . On 

the other hand, we have  

0 0 0( ) ( ) ( )( ) ( )f x h f x df x h h h      for 

an arbitrary vector h , where ( ) 0h   when

0h  . Combining it together, for the increment 

of ( ( ))f x t   we obtain 

0 0

0

0

( ( ) ( )

( )( . ( ) )

( . ( ) ). ( )

( )( ). ( )

f x t t f x

df x t t t

t t t t t t

df x t t t

 

    

 

  

    

        

    

     

For a certain ( )t   such that 

( ) 0t   when 0t   (we used the linearity 

of 0( )df x ). By the definition, this means that the 

derivative of ( ( ))f x t  at 0t t  is exactly

0( )( )df x  . The statement of the theorem can be 

expressed by a simple formula: 

1

1

( ( ))
... (2)n

n

df x t f f
x x

dt x x

 
  
 

  

 

To calculate the value Of df  at a point 0x  on a 

given vector   one can take an arbitrary curve 

passing Through 0x  at 0t  with   as the velocity 

vector at 0t and calculate the usual derivative of 

( ( ))f x t  at 0t t . 

 

Theorem 1.8.  For functions , :f g U   ,

,nU     

 
( ) (1)

( ) . . (2)

d f g df dg

d fg df g f dg

  

 
   

 

Proof. Consider an arbitrary point 0x  and an 

arbitrary vector   stretching from it. Let a curve 

( )x t  be such that 0 0( )x t x  and 0( )x t  .  

Hence 

0( )( )( ) ( ( ( )) ( ( )))
d

d f g x f x t g x t
dt

     

at 0t t  and  

0( )( )( ) ( ( ( )) ( ( )))
d

d fg x f x t g x t
dt

    

at 0t t  Formulae (1) and (2) then immediately 

follow from the corresponding formulae for the 

usual derivative Now, almost without change the 

theory generalizes to functions taking values in  
m  

instead of  . The only difference is that now the 

differential of a map : mF U    at a point x  

will be a linear function taking vectors in 
n  to 

vectors in 
m (instead of  ) . For an arbitrary 

vector | ,nh    

 

( ) ( ) ( )( )F x h F x dF x h     

+ ( ) (3)h h   

Where ( ) 0h    when  0h . We have  

1( ,..., )mdF dF dF  and  

1

1

1 1

11

1

...

....

... ... ... ... (4)

...

n

n

n

nm m

n

F F
dF dx dx

x x

F F

dxx x

dxF F

x x

 
  
 

  
     

   
      
 
  

  

 
In this matrix notation we have to write vectors as 

vector-columns. 

 

Theorem 1.9. For an arbitrary parametrized curve 

( )x t  in 
n , the differential of a   map 

: mF U    (where 
nU   ) maps the velocity 

vector ( )x t  to the velocity vector of the curve 

( ( ))F x t  in :m   

.( ( ))
( ( ))( ( )) (1)

dF x t
dF x t x t

dt
     

 

Proof.  By the definition of the velocity vector, 
.

( ) ( ) ( ). ( ) (2)x t t x t x t t t t      
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Where ( ) 0t    when 0t  . By the 

definition of the differential,  

( ) ( ) ( )( ) ( ) (3)F x h F x dF x h h h   

  

Where ( ) 0h   when 0h . we obtain  

.

.

. .

.

( ( )) ( ( ). ( ) )

( ) ( )( ( ) ( ) )

( ( ) ( ) ). ( ) ( )

( ) ( )( ( ) ( )

h

F x t t F x x t t t t

F x dF x x t t t t

x t t t t x t t t t

F x dF x x t t t t





  



       

      

       

     



   

 

For some ( ) 0t    when 0t  . This 

precisely means that 
.

( ) ( )dF x x t  is the velocity 

vector of ( )F x . As every vector attached to a point 

can be viewed as the velocity vector of some curve 

passing through this point, this theorem gives a clear 

geometric picture of dF  as a linear map on vectors. 

   

Theorem 1.10 Suppose we have two maps 

:F U V  and : ,G V W  where 

, ,n m pU V W      (open domains). Let 

: ( )F x y F x . Then the differential of the 

composite map :GoF U W  is the composition 

of the differentials of F  and :G   

( )( ) ( ) ( ) (4)d GoF x dG y odF x   

 

Proof.   We can use the description of the 

differential .Consider a curve ( )x t  in 
n  with the 

velocity vector 
.

x . Basically, we need to know to 

which vector in  
p it is taken by ( )d GoF . the 

curve ( )( ( ) ( ( ( ))GoF x t G F x t . By the same 

theorem, it equals the image under dG  of the 

Anycast Flow vector to the curve ( ( ))F x t  in 
m . 

Applying the theorem once again, we see that the 

velocity vector to the curve ( ( ))F x t is the image 

under dF of the vector 
.

( )x t . Hence 

. .

( )( ) ( ( ))d GoF x dG dF x   for an arbitrary 

vector 
.

x  . 

 

Corollary 1.0.    If we denote coordinates in 
n by 

1( ,..., )nx x  and in 
m by 

1( ,..., )my y , and write 

1

1

1

1

... (1)

... , (2)

n

n

n

n

F F
dF dx dx

x x

G G
dG dy dy

y y

 
  
 

 
  
 

  

Then the chain rule can be expressed as follows: 

1

1
( ) ... , (3)m

m

G G
d GoF dF dF

y y

 
  
 

  

Where 
idF  are taken from (1). In other words, to 

get ( )d GoF  we have to substitute into (2) the 

expression for 
i idy dF  from (3). This can also 

be expressed by the following matrix formula: 

  

1 1 1 1

11 1

1 1

.... ....

( ) ... ... ... ... ... ... ... (4)

... ...

m n

np p m m

m n

G G F F

dxy y x x

d GoF

dxG G F F

y y x x

     
         
    
          

       

 

 

i.e., if dG  and dF  are expressed by matrices of 

partial derivatives, then ( )d GoF  is expressed by 

the product of these matrices. This is often written as  

 

1 11 1

11

1 1

1 1

1

1

........

... ... ... ... ... ...

... ...

....

... ... ... , (5)

...

mn

p p p p

n m

n

m m

n

z zz z

y yx x

z z z z

x x y y

y y

x x

y y

x x

    
        
  
  

     
         

  
 
  

 
 
  

 
  

 

Or 

1

, (6)
im

a i a
i

z z y

x y x

 



  


  
   

Where it is assumed that the dependence of 
my  on 

nx  is given by the map F , the 

dependence of 
pz  on 

my  is given by the 

map ,G  and the dependence of  
pz on 

nx is given by the composition GoF .  

 

Definition 1.6.  Consider an open domain 
nU   . 

Consider also another copy of 
n , denoted for 
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distinction 
n

y , with the standard coordinates 

1( ... )ny y . A system of coordinates in the open 

domain U  is given by a map : ,F V U  where 

n

yV    is an open domain of 
n

y , such that the 

following three conditions are satisfied :  

(1) F  is smooth; 

(2) F  is invertible; 

(3) 
1 :F U V   is also smooth 

 

The coordinates of a point x U  in this system are 

the standard coordinates of 
1( ) n

yF x   

In other words,  
1 1: ( ..., ) ( ..., ) (1)n nF y y x x y y

  

Here the variables 
1( ..., )ny y  are the ―new‖ 

coordinates of the point x   

 

Example  1.2.     Consider a curve in 
2  specified 

in polar coordinates as  

( ) : ( ), ( ) (1)x t r r t t     

We can simply use the chain rule. The map 

( )t x t  can be considered as the composition of 

the maps  ( ( ), ( )), ( , ) ( , )t r t t r x r    . 

Then, by the chain rule, we have  
. . .

(2)
dx x dr x d x x

x r
dt r dt dt r




 

   
    

   

   

Here 
.

r  and 
.

  are scalar coefficients depending on 

t , whence the partial derivatives ,x x
r 

 
 

  are 

vectors depending on point in 
2 . We can compare 

this with the formula in the ―standard‖ coordinates: 
. . .

1 2x e x e y  . Consider the vectors   

,x x
r 

 
 

. Explicitly we have  

(cos ,sin ) (3)

( sin , cos ) (4)

x

r

x
r r

 

 








 



  

From where it follows that these vectors 

make a basis at all points except for the origin 

(where 0r  ). It is instructive to sketch a picture, 

drawing vectors corresponding to a point as starting 

from that point. Notice that  ,x x
r 

 
 

 are, 

respectively, the velocity vectors for the curves 

( , )r x r    0( )fixed   and 

0( , ) ( )x r r r fixed   . We can conclude 

that for an arbitrary curve given in polar coordinates 

the velocity vector will have components 
. .

( , )r   if 

as a basis we take : , : :r
x xe e

r  
  
 

  

. . .

(5)rx e r e      

A characteristic feature of the basis ,re e  

is that it is not ―constant‖ but depends on point. 

Vectors ―stuck to points‖ when we consider 

curvilinear coordinates. 

 

Proposition  1.3.   The velocity vector has the same 

appearance in all coordinate systems. 
Proof.        Follows directly from the chain rule and 

the transformation law for the basis ie .In particular, 

the elements of the basis ii
xe

x



 (originally, a 

formal notation) can be understood directly as the 
velocity vectors of the coordinate lines 

1( ,..., )i nx x x x   (all coordinates but 
ix  are 

fixed). Since we now know how to handle velocities 

in arbitrary coordinates, the best way to treat the 

differential of a map : n mF    is by its action 

on the velocity vectors. By definition, we set 

0 0 0

( ) ( ( ))
( ) : ( ) ( ) (1)

dx t dF x t
dF x t t

dt dt


  

Now 0( )dF x  is a linear map that takes vectors 

attached to a point 0

nx   to vectors attached to 

the point ( ) mF x    

1

1

1 1

11

1

1

...

...

( ,..., ) ... ... ... ... , (2)

...

n

n

n

m

nm m

n

F F
dF dx dx

x x

F F

dxx x

e e

dxF F

x x

 
  
 

  
     
  
      
 
  

  

In particular, for the differential of a function we 

always have  

1

1
... , (3)n

n

f f
df dx dx

x x

 
  
 

  

Where 
ix  are arbitrary coordinates. The 

form of the differential does not change when we 

perform a change of coordinates. 
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Example  1.3   Consider a 1-form in 
2  given in 

the standard coordinates: 

 

A ydx xdy     In the polar coordinates we will 

have cos , sinx r y r   , hence 

cos sin

sin cos

dx dr r d

dy dr r d

  

  

 

 
  

Substituting into A , we get 

2 2 2 2

sin (cos sin )

cos (sin cos )

(sin cos )

A r dr r d

r dr r d

r d r d

   

   

   

  

 

  

  

Hence  
2A r d  is the formula for A  in 

the polar coordinates. In particular, we see that this 

is again a 1-form, a linear combination of the 

differentials of coordinates with functions as 

coefficients. Secondly, in a more conceptual way, 

we can define a 1-form in a domain U  as a linear 

function on vectors at every point of U : 
1

1( ) ... , (1)n

n         

If 
i

ie  , where ii
xe

x



. Recall that the 

differentials of functions were defined as linear 

functions on vectors (at every point), and  

( ) (2)i i i

j jj

x
dx e dx

x


 
  

 
    at 

every point x .  

 

Theorem  1.9.   For arbitrary 1-form   and path 

, the integral 



  does not change if we change 

parametrization of   provide the orientation 

remains the same. 

Proof: Consider 
'

( ( )),
dx

x t
dt

  and  

'

'
( ( ( ))),

dx
x t t

dt
  As 

'

'
( ( ( ))),

dx
x t t

dt
 =

'

' '
( ( ( ))), . ,

dx dt
x t t

dt dt
   

 

Let p  be a rational prime and let 

( ).pK    We write   for p  or this section. 

Recall that K  has degree ( ) 1p p    over .  

We wish to show that  .KO    Note that   is 

a root of 1,px   and thus is an algebraic integer; 

since K  is a ring we have that   .KO   We 

give a proof without assuming unique factorization 

of ideals. We begin with some norm and trace 

computations. Let j  be an integer. If j is not 

divisible by ,p  then 
j  is a primitive 

thp  root of 

unity, and thus its conjugates are 
2 1, ,..., .p   

 

Therefore 
2 1

/ ( ) ... ( ) 1 1j p

K pTr            

 If p  does divide ,j  then 1,j   so it has only 

the one conjugate 1, and  
/ ( ) 1j

KTr p    By 

linearity of the trace, we find that  
2

/ /

1

/

(1 ) (1 ) ...

(1 )

K K

p

K

Tr Tr

Tr p

 

 

   

  

 



 

We also need to compute the norm of 1  . For 

this, we use the factorization  

 

1 2

2 1

... 1 ( )

( )( )...( );

p p

p

p

x x x

x x x  

 



    

   
  

Plugging in 1x   shows that  

 
2 1(1 )(1 )...(1 )pp          

Since the (1 )j  are the conjugates of (1 ),

this shows that  / (1 )KN p   The key result 

for determining the ring of integers KO  is the 

following. 

 

LEMMA 1.9 

  (1 ) KO p      

Proof.  We saw above that p  is a multiple of 

(1 )  in ,KO  so the inclusion 

(1 ) KO p   
 
is immediate.  Suppose 

now that the inclusion is strict. Since 

(1 ) KO  is an ideal of   containing p  

and p is a maximal ideal of  , we must have  

(1 ) KO   
 
Thus we can write 

 1 (1 )     

For some .KO   That is, 1   is a unit in .KO   

 

COROLLARY 1.1   For any ,KO   

/ ((1 ) ) .KTr p      

PROOF.       We have  
 

/ 1 1

1 1 1 1

1

1 1

((1 ) ) ((1 ) ) ... ((1 ) )

(1 ) ( ) ... (1 ) ( )

(1 ) ( ) ... (1 ) ( )

K p

p p

p

p

Tr        
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Where the i  are the complex embeddings of K  

(which we are really viewing as automorphisms of 

K ) with the usual ordering.  Furthermore, 1 j  is 

a multiple of 1   in KO  for every 0.j   Thus 

/ ( (1 )) (1 )K KTr O      
Since the trace is 

also a rational integer. 

 

PROPOSITION 1.4  Let p  be a prime number and 

let | ( )pK    be the 
thp  cyclotomic field. Then  

[ ] [ ] / ( ( ));K p pO x x     Thus 

21, ,..., p

p p  
 is an integral basis for KO . 

PROOF.    Let   KO   and write 

2

0 1 2... p

pa a a   

      With .ia   

Then 

 

2

0 1

2 1

2

(1 ) (1 ) ( ) ...

( )p p

p

a a

a

    

  



     

 
  

By the linearity of the trace and our above 

calculations we find that  / 0( (1 ))KTr pa    

We also have  

/ ( (1 )) ,KTr p    so 0a    Next consider 

the algebraic integer  
1 3

0 1 2 2( ) ... ;p

pa a a a    

      This is 

an algebraic integer since 
1 1p    is. The same 

argument as above shows that 1 ,a   and 

continuing in this way we find that all of the ia  are 

in  . This completes the proof. 

  

Example 1.4   Let K   , then the local ring ( )p  

is simply the subring of   of rational numbers with 

denominator relatively prime to p . Note that this 

ring   ( )p is not the ring p of p -adic integers; to 

get  p one must complete ( )p . The usefulness of 

,K pO  comes from the fact that it has a particularly 

simple ideal structure. Let a be any proper ideal of 

,K pO  and consider the ideal Ka O  of .KO  We 

claim that ,( ) ;K K pa a O O     That is, that a  is 

generated by the elements of a  in .Ka O  It is 

clear from the definition of an ideal that 

,( ) .K K pa a O O   To prove the other inclusion, 

let   be any element of a . Then we can write 

/    where KO   and .p   In 

particular, a   (since / a    and a  is an 

ideal), so KO   and .p   so .Ka O    

Since ,1/ ,K pO   this implies that 

,/ ( ) ,K K pa O O      as claimed.We can 

use this fact to determine all of the ideals of , .K pO  

Let a  be any ideal of ,K pO and consider the ideal 

factorization of Ka O in .KO  write it as 

n

Ka O p b   For some n  and some ideal ,b  

relatively prime to .p  we claim first that 

, , .K p K pbO O  We now find that 

  
, , ,( ) n n

K K p K p K pa a O O p bO p O      

Since , .K pbO  Thus every ideal of ,K pO  has the 

form 
,

n

K pp O  for some ;n  it follows immediately 

that ,K pO is noetherian. It is also now clear that 

,

n

K pp O is the unique non-zero prime ideal in ,K pO

. Furthermore, the inclusion , ,/K K p K pO O pO  

Since , ,K p KpO O p   this map is also 

surjection, since the residue class of ,/ K pO    

(with KO   and p  ) is the image of 
1 

 

in / ,K pO  which makes sense since   is invertible 

in / .K pO  Thus the map is an isomorphism. In 

particular, it is now abundantly clear that every non-

zero prime ideal of ,K pO is maximal.  To 

show that ,K pO is a Dedekind domain, it remains to 

show that it is integrally closed in K . So let K   

be a root of a polynomial with coefficients in  

, ;K pO  write this polynomial as  

11 0

1 0

...m mm

m

x x
 

 





    With i KO   and 

.i K pO   Set 0 1 1... .m      Multiplying by 

m  we find that   is the root of a monic 

polynomial with coefficients in .KO  Thus 

;KO   since ,p   we have 

,/ K pO    . Thus  ,K pO is integrally close 

in .K   

 

COROLLARY 1.2.   Let K  be a number field of 

degree n  and let   be in KO  then 

'

/ /( ) ( )K K KN O N     
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PROOF.  We assume a bit more Galois theory than 

usual for this proof. Assume first that /K   is 

Galois. Let   be an element of ( / ).Gal K   It is 

clear that /( ) / ( ) ;K KO O      since 

( ) ,K KO O   this shows that 

' '

/ /( ( ) ) ( )K K K KN O N O    . Taking the 

product over all ( / ),Gal K    we have 

' '

/ / /( ( ) ) ( )n

K K K K KN N O N O     Since 

/ ( )KN   is a rational integer and KO  is a free -

module of rank ,n    

// ( )K K KO N O   Will have order 
/ ( ) ;n

KN   

therefore 

 
'

/ / /( ( ) ) ( )n

K K K K KN N O N O     

This completes the proof.  In the general case, let L  

be the Galois closure of K  and set [ : ] .L K m   

 

IV. CLOUD OPERATIONAL TRUST PROPERTIES 
In this section we analyze the main 

properties, which help in assessing a Cloud provider 

operational trust.  

 

A. Adaptability Property 

Adaptability property reflects Cloud 

provider ability to provide timely and efficient 

reaction on infrastructure and application changes 

and events. Figure 3 identifies a function Ada(f1) 

that could be used to calculate Adaptability property; 
where f1 represents the factors affecting the 

Adaptability property, which are as follows. 

 

• Adaptability as a Service — This service resembles 

Cloud internal employees when reacting to changes 

in infrastructure and its hosted applications. 

Example of such changes include: hardware failure, 

changes in user requirements, security incidents, etc. 

Factors that help in assessing Adaptability Service 

include the following: Mean Time to Discover 

(MTTD) an incident, Mean Time to Invoke (MTTI) 

an action to remedy the incident, and Mean Time to 
Recover (MTTR) an incident. Providing adaptability 

as an automated service that does not require human 

intervention should result in much quicker incident 

discovery time, invocation time, and recovery time. 

This in turn would reduce the values of MTTD, 

MTTI and MTTR because of the following: self-

services do not require human being physical 

presence on incidents, do not require coordination 

amongst multiple team members, and do not require 

critical human observations. Trust in Adaptability as 

a self-managed service should also be considered as 
an important factor when calculating Ada(f1). In 

traditional enterprise infrastructure Trust is related to 

operational services which are provided by human 

beings and is assessed based on prior experience in 

the enterprise. Automated services, on the other 

hand, enable better measurement of trust, as the 

more mature and tested an adaptability service the 

higher trust would be granted. 

 

• Tolerance to Attack — This is based on (a.) 
statistical figures on prior experience with the 

infrastructure ability to mitigate attacks, which can 

be caused by either insiders or outsiders; and (b.) 

Cloud provider proactivity which could be estimated 

based on the security risk management process. 

 

B.  Resilience Property 

Resilience is the ability of a system to 

maintain its features (e.g. serviceability and security) 

despite a number of subsystem and components 

failures. High resilience requires a design which uses 

redundancy to eliminate any single points of failure, 
together with well crafted procedures (e.g. defining 

disaster recovery process). Resilient design helps in 

achieving higher availability and reliability, as its 

design approach focuses on tolerating and surviving 

the inevitable failures rather than trying to reduce 

them. Figure 4 identifies a function Res(f2) that 

could be used to calculate Resilience property; 

where f2 represents the factors affecting the 

Resilience property, which are as follows. 

 

• Resilience as a Service — This service resembles 
Cloud internal employees when architecting the 

infrastructure to eliminate any single point of failure. 

Example of reliability services include the 

following: if a hardware component fails, the system 

services should not be affected; if a process fails the 

system should provide redundant services that 

support the failed services; and data should be 

replicated to protect against physical corruption, 

failures, and/or security attacks. Factors that help in 

assessing Resilience Service include the following: 

MTTD, MTTI, MTTR, and Trust. These follow the 

same description provided for Adaptability Service. 
 

• Adaptability as a Property— The higher the 

Adaptability property the better the system can 

support resilience services, which in turn enhances 

the resilience property. 

• Tolerance to Attack — This follows the same 

description provided for Adaptability Service. 

• Architect — architecture properties of a system 

affect system resilience. These properties include: 

(a.) redundancy and replication of resources, (b.) 

individual component reliability as provided by the 
manufacturer; and (c.) process management that 

provides automated scripts and documents (these 

identify exact procedures on incidents). 

• Feedback of Availability and Reliability as a 

Service — Availability and Reliability are the two 

main properties that are directly reflected by 

Resilience. The higher resilient a system, the higher 
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availability and reliability would be expected. 

Availability and reliability services reflect the on-

time real work performed by a system to maintain its 

availability and reliability properties. Therefore, 

getting statistical figures about Availability and 

Reliability services should indicate the effectiveness 

of resilience services. This in turn affects resilience 
property. 

 

C. Scalability Property 

Scalability is about enabling the virtual 

infrastructure to scale resources up or down based on 

demand. For example, on peak periods the virtual 

layer should scale resources up, and similarly on off-

peak periods the virtual layer should release 

unneeded resources by scaling down. These should 

be reflected at the application to support the addition 

and removal of virtual resources. Also, these should 

not affect fundamental system properties and should 
always enforce user requirements (e.g. security and 

privacy). Scalability at virtual layer can be: 

Horizontal Scalability, Vertical Scalability, or 

combination of both. Horizontal Scalability is about 

the amount of instances that would need to be added 

or removed to a system to satisfy increase or 

decrease in demand. Vertical Scalability is about 

increasing or decreasing the size of instances 

themselves to maintain increase or decrease in 

demand. In this regard application layer scalability 

reacts differently to both types of scalability. For 
example, Horizontal Scalability means the 

application will be replicated at the newly created 

VMs; however, Vertical Scalability means the 

application needs to take advantages of the 

additional allocated resources (e.g. increase memory 

usage, spawn additional child processes). Figure 5 

identifies a function Scal(f3) that could be used to 

calculate Scalability property; where f3 represents 

the factors affecting the Scalability property, which 

are as follows.  

 

• Scalability as a Service — This service resembles 
Cloud internal employees when architecting the 

infrastructure to scale up and down on demand. It 

also resembles application architects who design the 

application to take advantage of additional resources 

when scaling up and releasing resources when 

scaling down. Example of cases, 

 

D. System Model 

XML has played a tremendous role in 

resolving syntax heterogeneous, however, there are 

still heterogeneous of semantics, the application of 
ontology technology can be a good solution to 

semantic heterogeneity. In this paper, the 

combination of XML and Ontology is adopted to 

solve the heterogeneous of syntax and semantics of 

power system integration, in order to build the 

unified information platform under Smart Grid. The 

model is based on three-tier architecture of BIS, 

namely, the application layer, middle layer and data 

layer, this structure gives full play to the BIS and 

CIS architecture advantages, has realized thin-client, 

distributed applications, and transparent access. 

System model is shown in Figure l . In accordance 

with the actual situation in power system, the 

application layer includes two types of users: one is 
the administrator workstation which designed 

specially for the staff of power system. Managers 

monitor the real-time data comes from the scence 

and various systems through a dedicated software, 

then give the corresponding operations to ensure that 

all the systems running nomally; the other is for 

people who use the facilities for query, the most 

important terminal is the browser, followed by 

telephone, voice, and SMS, also mobile phone 

platform (wap), that will meet the needs of the future 

Smart Grid. The middle layer is mainly responsible 

for the communication, integration and exchange of 
the heterogeneous data. This layer combinating 

middleware with component to achieve data 

integration, mainly consists of three main parts: 

ontology component, schema mapping component, 

and query component. In the environment of the 

future Smart Grid, by establishing the cloud platform 

of the power system, we can achieve the aims of 

saving source of hardware and software, scheduling 

reasonable, and giving balance of the source, as well 

as co-ordinating the electricity market. Taking the 

security requirements of the power system into 
account, the above three components are regarded as 

"private cloud", respectively, the entire middleware 

as the "private cloud" of the power system. When 

other applications or customizations need some of 

the above, or the whole functions, then you can 

directly access the cloud platform to call this 

function in order to assemble and reuse, without 

redeveloping, this implement reusability and Plug 

and Play functionality of component. 

 

E. System Infrastructure an Net-AMI Meter 

Data Flow Illustration Through the Protocol 

Stack 

The Net-AMI meter is the major 

component for communication of information flows 

in the smart grid distribution system networks. The 

Net-AMI meter needs to relay time of use metering, 

power information, HAN information for outage 

management, demand response, network 

optimization, distribution of renewable sources and 

controlling home or building appliances. As we 

discussed in Section III, the Net- AMI meter may 

not be capable of processing HAN protocols due to 
protocol incompatibilities issues and limited 

processing capabilities. The Net-AMI meter’s 

principal architectural function is the fast 

communication of data to and from the cloud center. 

In this section, we describe how the Net-AMI meter 

combines all the data from various sources and 

hands off data to a cellular protocol [e.g., typically 
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GSM, 3 GPP high speed packet access (HSPA), 3 

GPP LTE] for over the air communication. 

Eventually, data is received by the cloud system for 

processing. In order to process the data in the cloud 

in a systematic way, the Net-AMI meter appends a 

packet header to data to enable protocol 

identification and message handling. In Fig. 4(a), we 
illustrate an example of the mobile device initiating 

a control operation of in-building power system (i.e., 

HAN network) using the Net-AMI as relay portal. In 

our discussion the cognitive spectrum management 

(cognitive radio services) residing in cloud center, 

identifies the unused bands and sends a CTS signal 

including the query by the user to the Net-AMI 

meter indicating band availability. The Net-AMI 

responds to query (i.e., in this case it is remote home 

energy control) and retrieves home energy data from 

HAN network. The Net-AMI acts a relay portal 

device and performs uplink transmission to the cloud 
center. The cloud center performs a plethora of 

services such as waveform processing service, 

protocols service and energy manager and 

optimization algorithms. The energy control services 

are displaced back to Net-AMI via ROF through 

CRA for in-building control operation. The Net-

AMI meter performs concatenation of energy 

application control (EAC) header for uplink 

transmission as shown in Fig. 4(c). The EAC header 

details the type of the HAN protocol (i.e., Zigbee, 

Zwave, Proprietary, and WiFi), the version of 
protocol, and the Net- AMI identifier used for source 

and destination identification. The Net-AMI meter 

waits for the CTS signal from CRA for uplink 

transmission. The CTS signal broadcasts specific 

information to Net-AMI meter, as shown in Fig. 

4(c). The EAC header in downlink details first field 

as frame type. The Cloud sends CTS, query or both. 

This field identifies as binary 0 (CTS), query (1), 

and both (0, 1). The next field provides scheduling 

of time and frequency slots for data transfer with 

less interference of signals at CRA. If the Net-AMI 

is unable to perform transmission within a CTS 
time-out period, the system delays transmission until 

next CTS control signal. A field indicating the type 

of cellular protocol (i.e., LTE, GSM, and CDMA) is 

included in the RF carrier frequency signal to 

support uplink transmission. The cloud reference 

time is used to account for time out scenarios based 

on received time slots. Finally, a Net-AMI identifier 

is needed for destination and source routing. Based 

on all these inputs, the Net-AMI meter bandpass 

modulates the signal to a specific RF carrier 

frequency and performs uplink transmission. In Fig. 
4(b), without loss of generality, we illustrate data 

flow through a cellular protocol stack with respect to 

the 3 GPP-LTE protocol. The Net-AMI meter 

concatenates an EAC header to the data packet in the 

EAC layer. It inserts as information packets in the 

cellular protocol frame (LTE in this example). The 

uplink and downlink transmission of the LTE 

protocol are below the EAC layer. Thus, LTE 

applies packet retransmission to the occasional 

uncorrectable packet errors due to fading and 

pathloss. This is accomplished through a highly 

sophisticated two-layered retransmission scheme: a 

fast hybrid-ARQ protocol with low overhead 

feedback and support for soft combining with 
incremental redundancy. This is complemented with 

a highly reliable selective-repeat ARQ protocol in 

the MAC layer [41], [42]. A fixed bit 24 bit cyclic 

redundancy check (CRC) is performed on every 

block coming from above layers in physical layer. 

The calculation performed using CRC is appended 

to every transport block in order to check coherence 

of received signal. This process ensures data 

integrity and allows cellular protocols to handle the 

issues without our intervention. Since we included 

the CRC in the application layer, retransmission of 

packets is done in network layer. 
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